论文标题
具有离散零件的一类分布式的准无限驱动能力
Quasi-infinite divisibility of a class of distributions with discrete part
论文作者
论文摘要
我们考虑在$ \ mathbb {r} $上的分布,这些分布可以写为非零离散分布和绝对连续的分布的总和。我们表明,当且仅当其特征函数远离零时,这种分布是准绝对可分开的,因此给出了一类新的准分布分布。此外,对于这类发行版,我们表征了某些功能$ g $的$ g $ - amoment的存在。
We consider distributions on $\mathbb{R}$ that can be written as the sum of a non-zero discrete distribution and an absolutely continuous distribution. We show that such a distribution is quasi-infinitely divisible if and only if its characteristic function is bounded away from zero, thus giving a new class of quasi-infinitely divisible distributions. Moreover, for this class of distributions we characterize the existence of the $g$-moment for certain functions $g$.