论文标题

具有离散零件的一类分布式的准无限驱动能力

Quasi-infinite divisibility of a class of distributions with discrete part

论文作者

Berger, David, Kutlu, Merve

论文摘要

我们考虑在$ \ mathbb {r} $上的分布,这些分布可以写为非零离散分布和绝对连续的分布的总和。我们表明,当且仅当其特征函数远离零时,这种分布是准绝对可分开的,因此给出了一类新的准分布分布。此外,对于这类发行版,我们表征了某些功能$ g $的$ g $ - amoment的存在。

We consider distributions on $\mathbb{R}$ that can be written as the sum of a non-zero discrete distribution and an absolutely continuous distribution. We show that such a distribution is quasi-infinitely divisible if and only if its characteristic function is bounded away from zero, thus giving a new class of quasi-infinitely divisible distributions. Moreover, for this class of distributions we characterize the existence of the $g$-moment for certain functions $g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源