论文标题

对无监督异常检测算法的大规模评估

A Revealing Large-Scale Evaluation of Unsupervised Anomaly Detection Algorithms

论文作者

Alvarez, Maxime, Verdier, Jean-Charles, Nkashama, D'Jeff K., Frappier, Marc, Tardif, Pierre-Martin, Kabanza, Froduald

论文摘要

异常检测有许多应用程序,从银行弗拉德检测和网络威胁检测到设备维护和健康监测。但是,为给定应用程序选择合适的算法仍然是一个具有挑战性的设计决定,通常是由有关异常检测算法的文献所启示的。我们广泛审查了十二种最受欢迎​​的无监管的异常检测方法。我们观察到,到目前为止,它们已经使用不一致的方案进行了比较 - 兴趣类或正类别的选择,培训和测试数据的拆分以及选择超参数的选择 - 导致评估模棱两可。该观察结果使我们定义了一个连贯的评估协议,然后我们用该协议来产生更新,更精确的图片,以了解十二种方法在五个广泛使用的表格数据集上的相对性能。虽然我们的评估无法查明一种胜过所有数据集中所有其他方法的方法,但它标识了那些脱颖而出并修改对其相对性能的知识错误的方法。

Anomaly detection has many applications ranging from bank-fraud detection and cyber-threat detection to equipment maintenance and health monitoring. However, choosing a suitable algorithm for a given application remains a challenging design decision, often informed by the literature on anomaly detection algorithms. We extensively reviewed twelve of the most popular unsupervised anomaly detection methods. We observed that, so far, they have been compared using inconsistent protocols - the choice of the class of interest or the positive class, the split of training and test data, and the choice of hyperparameters - leading to ambiguous evaluations. This observation led us to define a coherent evaluation protocol which we then used to produce an updated and more precise picture of the relative performance of the twelve methods on five widely used tabular datasets. While our evaluation cannot pinpoint a method that outperforms all the others on all datasets, it identifies those that stand out and revise misconceived knowledge about their relative performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源