论文标题
相对论旋转恒星进化的新型配方
A novel formulation for the evolution of relativistic rotating stars
论文作者
论文摘要
我们提出了一种新的公式,以在总体相对论中构建旋转恒星的数值平衡构型。考虑到将其准静态演变应用到其准演化中,我们采用了拉格朗日制定自己设计的拉格朗日表述,在这种情况下,我们解决了力量平衡方程式,以寻求分配给网格点的流体元素的位置,而不是普通的欧拉式配方。与文献中的先前作品不同,我们不使用Euler方程的第一个积分,这通常不是通过分析整合获得的。与先前的方法相比,我们为每个流体元素分配了质量,特定的角动量和熵,其中指定了角速度或角动量的空间分布。这些分布是在我们的制定中得出所有流体元件(或网格点)位置后确定的。我们通过使用我们的新的多维根求根方案(称为W4方法)在有限元元素方法中求解了代数非线性方程的大型代数非线性方程。为了证明我们的新配方的能力,我们构建了一些旋转构型,既旋转式型偏压和斜视。我们还解决了三个模仿冷却,质量损失和质量成分的进化序列,作为简单的玩具模型。
We present a new formulation to construct numerically equilibrium configurations of rotating stars in general relativity. Having in mind the application to their quasi static evolutions, we adopt a Lagrangian formulation of our own devising, in which we solve force balance equations to seek for the positions of fluid elements assigned to the grid points, instead of the ordinary Eulerian formulation. Unlike previous works in the literature, we do not employ the first integral of the Euler equation, which is not obtained by an analytic integration in general. We assign a mass, specific angular momentum and entropy to each fluid element in contrast to the previous methods, in which the spatial distribution of the angular velocity or angular momentum is specified. Those distributions are determined after the positions of all fluid elements (or grid points) are derived in our formulation. We solve the large system of algebraic nonlinear equations that are obtained by discretizing the time-independent Euler and Einstein equations in the finite-elements method by using our new multi-dimensional root-finding scheme, named the W4 method. To demonstrate the capability of our new formulation, we construct some rotational configurations both barotropic and baroclinic. We also solve three evolutionary sequences that mimic the cooling, mass-loss, and mass-accretion as simple toy models.