论文标题

通过机器学习揭示Galaxy-Halo连接

Revealing the Galaxy-Halo Connection Through Machine Learning

论文作者

Hausen, Ryan, Robertson, Brant E., Zhu, Hanjue, Gnedin, Nickolay Y., Madau, Piero, Schneider, Evan E., Villasenor, Bruno, Drakos, Nicole E.

论文摘要

了解星系恒星质量,恒星形成速率和暗物质光环质量之间的联系代表了星系形成理论的关键目标。包括流体动力学,恒星形成的物理处理,超新星的反馈以及电离光子的辐射传递的宇宙学模拟可以捕获与建立这些连接相关的过程。这些物理学的复杂性可能很难解散,并混淆了银河系种群中质量依赖的趋势。在这里,我们训练一种称为可解释的提升机(EBM)的机器学习方法,以推断恒星质量和恒星形成率是如何通过计算机上的宇宙电离(CROC)项目模拟的近600万个星系的速度如何取决于光晕质量的物理特性,即形成历史记录$ v_ \ veepm and cosm and cosm and cosm and cosm and cosm and cosm and cosm and cosm and cosm and costmic} $} $ |所得的EBM模型揭示了这些属性在设置Galaxy Stellar质量和星形形成率中的相对重要性,而$ V_ \ Mathrm {peak} $提供了最主要的贡献。环境特性为模拟恒星质量和恒星形成率的建模提供了实质性改进,仅在$ \ lyssim10 \%的模拟星系中进行建模。我们还提供了EBM模型的替代配方,该公式能够使低分辨率模拟无法跟踪暗物质光环的内部结构,以预测由具有详细的Baryonic物理学的高分辨率模拟计算出的星系的恒星质量和星形的星系速率。

Understanding the connections between galaxy stellar mass, star formation rate, and dark matter halo mass represents a key goal of the theory of galaxy formation. Cosmological simulations that include hydrodynamics, physical treatments of star formation, feedback from supernovae, and the radiative transfer of ionizing photons can capture the processes relevant for establishing these connections. The complexity of these physics can prove difficult to disentangle and obfuscate how mass-dependent trends in the galaxy population originate. Here, we train a machine learning method called Explainable Boosting Machines (EBMs) to infer how the stellar mass and star formation rate of nearly 6 million galaxies simulated by the Cosmic Reionization on Computers (CROC) project depend on the physical properties of halo mass, the peak circular velocity of the galaxy during its formation history $v_\mathrm{peak}$, cosmic environment, and redshift. The resulting EBM models reveal the relative importance of these properties in setting galaxy stellar mass and star formation rate, with $v_\mathrm{peak}$ providing the most dominant contribution. Environmental properties provide substantial improvements for modeling the stellar mass and star formation rate in only $\lesssim10\%$ of the simulated galaxies. We also provide alternative formulations of EBM models that enable low-resolution simulations, which cannot track the interior structure of dark matter halos, to predict the stellar mass and star formation rate of galaxies computed by high-resolution simulations with detailed baryonic physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源