论文标题
机械工作的热力学速度限制
Thermodynamic speed limits for mechanical work
论文作者
论文摘要
热力学速度限制是一组经典的不确定性关系,到目前为止,它将全球范围作为热量的随机耗散作为热量和熵的产生。在这里,我们得出了在热力学益处上的上限和下限的积分速度限制,而不是对这些热力学成本的限制,这是在系统上或系统上或通过系统完成的最短时间。在短时间内,我们展示了此外部时间尺度如何与工作的内在时间尺度相关联,从这些积分速度限制中恢复了差异速度限制的内在时间尺度,并将随机热力学的第一定律转变为速度的第一定律。作为实物示例,我们考虑了闪烁的布朗棘轮所做的工作,以及在潜在井中的粒子上所做的工作。
Thermodynamic speed limits are a set of classical uncertainty relations that, so far, place global bounds on the stochastic dissipation of energy as heat and the production of entropy. Here, instead of constraints on these thermodynamic costs, we derive integral speed limits that are upper and lower bounds on a thermodynamic benefit -- the minimum time for an amount of mechanical work to be done on or by a system. In the short time limit, we show how this extrinsic timescale relates to an intrinsic timescale for work, recovering the intrinsic timescales in differential speed limits from these integral speed limits and turning the first law of stochastic thermodynamics into a first law of speeds. As physical examples, we consider the work done by a flashing Brownian ratchet and the work done on a particle in a potential well subject to external driving.