论文标题
学习如何使用层次增强学习与复杂界面进行交互
Learning how to Interact with a Complex Interface using Hierarchical Reinforcement Learning
论文作者
论文摘要
分层增强学习(HRL)允许交互式剂将复杂的问题分解为子任务的层次结构。高级任务可以调用低级任务的解决方案,就好像它们是原始行动一样。在这项工作中,我们研究了分层分解的实用性,以学习一种与复杂界面相互作用的合适方法。具体而言,我们训练可以与模拟Android设备中的应用程序连接的HRL代理。我们介绍了一个层次分布的深入增强学习体系结构,该体系结构学习(1)对应于简单的手指手势的子任务,以及(2)如何结合这些手势以解决几个Android任务。我们的方法依赖于目标条件,可以更普遍地将任何基本RL代理转换为HRL代理。我们使用Androidenv环境来评估我们的方法。对于实验,HRL代理使用流行的DQN算法的分布式版本来训练层次结构的不同组件。虽然天然的动作空间对于简单的DQN代理完全棘手,但我们的体系结构可用于建立一种与不同任务相互作用的有效方法,从而在不同级别的抽象级别上显着提高了相同的DQN代理的性能。
Hierarchical Reinforcement Learning (HRL) allows interactive agents to decompose complex problems into a hierarchy of sub-tasks. Higher-level tasks can invoke the solutions of lower-level tasks as if they were primitive actions. In this work, we study the utility of hierarchical decompositions for learning an appropriate way to interact with a complex interface. Specifically, we train HRL agents that can interface with applications in a simulated Android device. We introduce a Hierarchical Distributed Deep Reinforcement Learning architecture that learns (1) subtasks corresponding to simple finger gestures, and (2) how to combine these gestures to solve several Android tasks. Our approach relies on goal conditioning and can be used more generally to convert any base RL agent into an HRL agent. We use the AndroidEnv environment to evaluate our approach. For the experiments, the HRL agent uses a distributed version of the popular DQN algorithm to train different components of the hierarchy. While the native action space is completely intractable for simple DQN agents, our architecture can be used to establish an effective way to interact with different tasks, significantly improving the performance of the same DQN agent over different levels of abstraction.