论文标题

Se-Gan:用于刷子手写字体生成的骨架增强基于GAN的模型

SE-GAN: Skeleton Enhanced GAN-based Model for Brush Handwriting Font Generation

论文作者

Yuan, Shaozu, Liu, Ruixue, Chen, Meng, Chen, Baoyang, Qiu, Zhijie, He, Xiaodong

论文摘要

字体生成的先前作品主要集中在标准印刷字体上,在该字体上,角色的形状稳定并且笔触明显分开。关于刷子手写字体生成的罕见研究,涉及整体结构变化和复杂的笔触转移。为了解决这个问题,我们通过集成骨架信息提出了一种基于GAN的新型图像翻译模型。我们首先从训练图像中提取骨架,然后设计图像编码器和骨骼编码器以提取相应的特征。设计了一个自我竞争的精致注意模块,以指导模型学习不同域之间的独特特征。涉及骨架鉴别器,首先将生成图像的骨骼图像与预训练的发电机合成,然后判断其对目标的现实性。我们还为具有六种样式和15,000张高分辨率图像的大规模刷笔字体图像数据集提供了大规模的刷子手写字体。定量和定性实验结果都证明了我们提出的模型的竞争力。

Previous works on font generation mainly focus on the standard print fonts where character's shape is stable and strokes are clearly separated. There is rare research on brush handwriting font generation, which involves holistic structure changes and complex strokes transfer. To address this issue, we propose a novel GAN-based image translation model by integrating the skeleton information. We first extract the skeleton from training images, then design an image encoder and a skeleton encoder to extract corresponding features. A self-attentive refined attention module is devised to guide the model to learn distinctive features between different domains. A skeleton discriminator is involved to first synthesize the skeleton image from the generated image with a pre-trained generator, then to judge its realness to the target one. We also contribute a large-scale brush handwriting font image dataset with six styles and 15,000 high-resolution images. Both quantitative and qualitative experimental results demonstrate the competitiveness of our proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源