论文标题
计时不确定性下的MITL验证
MITL Verification Under Timing Uncertainty
论文作者
论文摘要
提出了公制间隔时间逻辑(MITL)验证算法。它在不依赖高频采样的情况下验证连续时间信号。取而代之的是,假定在给定信号的单个原子命题为真的时间中,有过度和不足的间隔的集合可用于。这些是归纳性的,以生成针对指定的MITL公式的相应的过度和不足。过度和不足型号之间的差距反映了对信号的时间不确定性,从而提供了对算法保守性的定量度量。当原子命题的过度对象与未及值下的原子命题相吻合时,验证是准确的。提供了数值示例来说明。
A Metric Interval Temporal Logic (MITL) verification algorithm is presented. It verifies continuous-time signals without relying on high frequency sampling. Instead, it is assumed that collections of over- and under-approximating intervals are available for the times at which the individual atomic propositions hold true for a given signal. These are combined inductively to generate corresponding over- and under-approximations for the specified MITL formula. The gap between the over- and under-approximations reflects timing uncertainty with respect to the signal being verified, thereby providing a quantitative measure of the conservativeness of the algorithm. The verification is exact when the over-approximations for the atomic propositions coincide with the under-approximations. Numerical examples are provided to illustrate.