论文标题
动态原型卷积网络,用于几个射击语义分割
Dynamic Prototype Convolution Network for Few-Shot Semantic Segmentation
论文作者
论文摘要
在情节训练方案下,几乎没有射击语义分割(FSS)的主要挑战是如何量身定制支持和查询功能和/或其原型之间的理想互动。大多数现有的FSS方法通过仅利用普通操作(例如余弦相似性和功能串联)来分割查询对象来实现此类支持 - 问题交互。但是,这些相互作用方法通常无法很好地捕获FSS中广泛遇到的查询图像中的内在对象细节,例如,如果要分割的查询对象具有孔和插槽,则几乎总是发生分割。为此,我们提出了一个动态原型卷积网络(DPCN),以完全捕获上述固有细节以获得准确的FSS。具体而言,在DPCN中,首先提出了动态卷积模块(DCM)来从支持前景生成动态内核,然后通过使用这些内核对查询功能进行卷积操作来实现信息交互。此外,我们为DPCN配备了支持激活模块(SAM)和功能过滤模块(FFM),以生成伪掩码,并分别滤除查询图像的背景信息。 SAM和FFM一起可以从查询功能中挖掘丰富的上下文信息。我们的DPCN在K-Shot FSS设置下也具有灵活性和高效。对Pascal-5i和Coco-20i的广泛实验表明,DPCN在1摄和5弹性设置下产生了卓越的性能。
The key challenge for few-shot semantic segmentation (FSS) is how to tailor a desirable interaction among support and query features and/or their prototypes, under the episodic training scenario. Most existing FSS methods implement such support-query interactions by solely leveraging plain operations - e.g., cosine similarity and feature concatenation - for segmenting the query objects. However, these interaction approaches usually cannot well capture the intrinsic object details in the query images that are widely encountered in FSS, e.g., if the query object to be segmented has holes and slots, inaccurate segmentation almost always happens. To this end, we propose a dynamic prototype convolution network (DPCN) to fully capture the aforementioned intrinsic details for accurate FSS. Specifically, in DPCN, a dynamic convolution module (DCM) is firstly proposed to generate dynamic kernels from support foreground, then information interaction is achieved by convolution operations over query features using these kernels. Moreover, we equip DPCN with a support activation module (SAM) and a feature filtering module (FFM) to generate pseudo mask and filter out background information for the query images, respectively. SAM and FFM together can mine enriched context information from the query features. Our DPCN is also flexible and efficient under the k-shot FSS setting. Extensive experiments on PASCAL-5i and COCO-20i show that DPCN yields superior performances under both 1-shot and 5-shot settings.