论文标题
具有全球收敛保证的神经网络中的功能学习
On Feature Learning in Neural Networks with Global Convergence Guarantees
论文作者
论文摘要
我们通过设置中的梯度流量(GF)研究了宽阔的神经网络(NNS),这些设置允许特征学习,同时允许非反应全局收敛保证。首先,对于平均场缩放下的宽浅NN,并且具有一般的激活功能,我们证明,当输入维度不小于训练集的大小时,训练损耗在GF下以线性速率收敛到零。在此分析的基础上,我们研究了一个宽阔的多层NN模型,其二到层的层是通过GF训练的,为此我们还证明了训练损耗的线性率收敛到零,但无论输入维度如何。我们还从经验上表明,与神经切线内核(NTK)制度不同,我们的多层模型展示了特征学习的特征学习,并且可以比其NTK对应物获得更好的概括性能。
We study the optimization of wide neural networks (NNs) via gradient flow (GF) in setups that allow feature learning while admitting non-asymptotic global convergence guarantees. First, for wide shallow NNs under the mean-field scaling and with a general class of activation functions, we prove that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF. Building upon this analysis, we study a model of wide multi-layer NNs whose second-to-last layer is trained via GF, for which we also prove a linear-rate convergence of the training loss to zero, but regardless of the input dimension. We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.