论文标题
用于神经图像分割的类平衡像素
Class Balanced PixelNet for Neurological Image Segmentation
论文作者
论文摘要
在本文中,我们提出了使用像素级卷积神经网络(CNN)的自动脑肿瘤分割方法(例如Pixelnet)。该模型提取物具有多个卷积层的特征,并将它们串联成形成一个超柱,其中样本一个适度数量的像素以进行优化。 Hyper-Column确保对像素预测指标的本地和全球上下文信息。该模型通过在训练阶段进行一些像素来确认统计效率,在训练阶段,空间冗余限制了常规像素级语义分割方法中相邻像素之间的信息学习。此外,训练数据中的标签偏度导致卷积模型通常会收敛到某些类别,这是医疗数据集中常见问题。我们通过在抽样时间中为所有类中选择相等数量的像素来解决这个问题。提出的模型已在脑肿瘤和缺血性中风病变分割数据集中取得了令人鼓舞的结果。
In this paper, we propose an automatic brain tumor segmentation approach (e.g., PixelNet) using a pixel-level convolutional neural network (CNN). The model extracts feature from multiple convolutional layers and concatenate them to form a hyper-column where samples a modest number of pixels for optimization. Hyper-column ensures both local and global contextual information for pixel-wise predictors. The model confirms the statistical efficiency by sampling a few pixels in the training phase where spatial redundancy limits the information learning among the neighboring pixels in conventional pixel-level semantic segmentation approaches. Besides, label skewness in training data leads the convolutional model often converge to certain classes which is a common problem in the medical dataset. We deal with this problem by selecting an equal number of pixels for all the classes in sampling time. The proposed model has achieved promising results in brain tumor and ischemic stroke lesion segmentation datasets.