论文标题
通过分布估计的无源域的适应
Source-Free Domain Adaptation via Distribution Estimation
论文作者
论文摘要
域的适应性旨在将所学的知识从标记的源域中学习的知识转移到数据分布不同的未标记目标域。但是,由于隐私保存策略,大多数现有方法所需的源域中所需的培训数据通常不可用。最近,无源域的适应性(SFDA)引起了很多关注,它试图在不使用源数据的情况下解决域的适应问题。在这项工作中,我们提出了一个名为SFDA-DE的新型框架,以通过源分布估计来解决SFDA任务。首先,我们使用球形K-均值聚类的目标数据生成可靠的伪标记,其初始类中心是预审计模型分类器学到的权重矢量(锚)。此外,我们建议通过利用目标数据和相应的锚点来估计源域的类调节特征分布。最后,我们从估计分布中采样替代特征,然后通过最大程度地减少对比度适应损耗函数来对齐两个域。广泛的实验表明,所提出的方法在多个DA基准上实现了最先进的性能,甚至超过了需要大量源数据的传统DA方法。
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different. However, the training data in source domain required by most of the existing methods is usually unavailable in real-world applications due to privacy preserving policies. Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data. In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation. Firstly, we produce robust pseudo-labels for target data with spherical k-means clustering, whose initial class centers are the weight vectors (anchors) learned by the classifier of pretrained model. Furthermore, we propose to estimate the class-conditioned feature distribution of source domain by exploiting target data and corresponding anchors. Finally, we sample surrogate features from the estimated distribution, which are then utilized to align two domains by minimizing a contrastive adaptation loss function. Extensive experiments show that the proposed method achieves state-of-the-art performance on multiple DA benchmarks, and even outperforms traditional DA methods which require plenty of source data.