论文标题
基于优化的AGC增强BES的BESS的横越储备分配
Optimization-Based Ramping Reserve Allocation of BESS for AGC Enhancement
论文作者
论文摘要
本文提出了一种新的方案,称为基于优化的坡道储备分配(ORRA),以解决自动生成控制(AGC)增强的持续挑战,即,多个电池储能系统(BESS)的最佳协调。在进一步利用BESS和缓慢升值资源之间的协同作用的同时,该建议的计划可深入了解能量中性的操作,这是通过平稳地停止BESS参与以及最小化区域注入错误(AIE)(AIE)(AIE)的最小化,这是传统区域控制错误(ACE)来实现的。 Orra的第一阶段是将神经网络(NNS)与AIE合并在一起,以确保将倾斜储量的零均值分配到BESS中。然后,这些AIE信号用于制定BES的最佳协调作为在线优化问题,因此是反馈驱动的。最后,开发了一种分布式优化算法来实时解决配制的问题,实现了sublrinear动态遗憾,该遗憾量化了具有完美全局信息的集中优化器计算的轨迹的成本差异。与BESS的地理分布一致,提出的Orra已完全分布,使该算法可以在所有节点平行执行。对修改的IEEE 14总线系统进行了模拟,以说明Orra的有效性和重要特征。
This paper presents a novel scheme termed Optimization-based Ramping Reserve Allocation (ORRA) for addressing an ongoing challenge in Automatic Generation Control (AGC) enhancement, i.e., the optimal coordination of multiple Battery Energy Storage Systems (BESSs). While exploiting further the synergy between BESSs and slow ramping resources, the proposed scheme offers an insight into the energy-neutral operation, which is achieved by smoothly discontinuing the BESS participation along with the minimization of Area Injection Error (AIE), a variant of traditional Area Control Error (ACE). The first stage of ORRA is to incorporate Neural Networks (NNs) with the AIE in order to ensure a zero-mean of ramping reserves to be allocated among BESSs. These AIE signals are then used to formulate the optimal coordination of BESS as an online optimization problem, which is therefore feedback-driven. Finally, a distributed optimization algorithm is developed to solve the formulated problem in real-time, achieving a sublinear dynamic regret that quantifies the cost difference to the trajectory computed by a centralized optimizer with perfect global information. Consistent with the geographical distribution of BESSs, the proposed ORRA is fully distributed such that the algorithm can be executed in parallel at all nodes. Simulations on a modified IEEE 14-bus system are performed to illustrate the effectiveness and important features of ORRA.