论文标题
大地观察数据的卫星图像时间序列分析
Satellite Image Time Series Analysis for Big Earth Observation Data
论文作者
论文摘要
大地观测数据的分析软件的开发面临着几个挑战。设计师需要在冲突的因素之间取得平衡。对于特定硬件体系结构有效的解决方案不能在其他环境中使用。适用于通用硬件和开放标准的软件包将与专用解决方案具有相同的性能。假设其用户是计算机程序员的软件是灵活的,但对于广泛的受众来说可能很难学习。本文描述了使用机器学习的卫星图像时间序列分析的开源R包。为了使专家最大程度地使用卫星图像,坐着采用了时间优先的空间效果方法。它支持土地分类数据分析的完整周期。它的API提供了一组简单但功能强大的功能。该软件在不同的云计算环境中工作。卫星图像时间序列输入了机器学习分类器,结果是使用空间平滑后进行后处理的。由于机器学习方法需要准确的培训数据,因此SITS包括用于培训样本质量评估的方法。该软件还提供了验证和准确度测量的方法。因此,该软件包包括用于大型EO数据分析的生产环境。我们表明,这种方法通过在2018年塞拉多生物群落(Cerrado Biome)的案例研究中,可以为土地使用和土地覆盖地图产生高度准确性。
The development of analytical software for big Earth observation data faces several challenges. Designers need to balance between conflicting factors. Solutions that are efficient for specific hardware architectures can not be used in other environments. Packages that work on generic hardware and open standards will not have the same performance as dedicated solutions. Software that assumes that its users are computer programmers are flexible but may be difficult to learn for a wide audience. This paper describes sits, an open-source R package for satellite image time series analysis using machine learning. To allow experts to use satellite imagery to the fullest extent, sits adopts a time-first, space-later approach. It supports the complete cycle of data analysis for land classification. Its API provides a simple but powerful set of functions. The software works in different cloud computing environments. Satellite image time series are input to machine learning classifiers, and the results are post-processed using spatial smoothing. Since machine learning methods need accurate training data, sits includes methods for quality assessment of training samples. The software also provides methods for validation and accuracy measurement. The package thus comprises a production environment for big EO data analysis. We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome, one of the world's fast moving agricultural frontiers for the year 2018.