论文标题

带有给定零的指数类型的整个函数的Malliavin-Rubel定理:60年后

The Malliavin-Rubel theorem on small entire functions of exponential type with given zeros: 60 years later

论文作者

Khabibullin, B. N.

论文摘要

让$ z $和$ w $是复杂平面$ \ mathbb c $上的点分布。以下问题可以追溯到F. Carlson,T。Carleman,L。Schwartz,A。F。Leont'ev,B。Ya。 Levin,J.-P。卡哈恩和其他人。对于整个函数的$ z $和$ w $,$ g \ neq 0 $ of of $ w $的指数类型消失,在$ z $上有一个整个函数$ f \ neq 0 $ neq neq 0 $ neq 0 $ neq neq 0 $ neq neq 0 $ neq neq 0 $ neq neq neq 0 $在$ z $上消失,以至于$ | f | f | f | \ leq | g | $在虚构的轴上? 1960年代初期的古典Malliavin-Rubel定理完全解决了这个问题,即“正” $ z $和$ w $仅在阳性半疗法上。我们在1980年代后期为“复杂” $ z \ subset \ mathbb c $和$ w \ subset \ mathbb c $从想象轴隔开的“复杂” $ z \ subset \ mathbb c $和$ w \ subset \ subset \ mathbb c $建立了许多概括。在本文中,在更一般的次谐波框架中解决了更严重的问题,用于在$ \ mathbb c $上分布群众。所有前面提到的结果都可以从论文的主要结果中以更强的形式获得,即使在初始配方$ z $和$ w $的初始配方中,以及整个功能$ f $和$ g $的指数类型。本文的一些结果与著名的beurling-malliavin定理与完整性和乘数的半径密切相关。

Let $Z$ and $W$ are distributions of points on the complex plane $\mathbb C$. The following problem goes back to the studies of F. Carlson, T. Carleman, L. Schwartz, A. F. Leont'ev, B. Ya. Levin, J.-P. Kahane and others. For which $Z$ and $W$ for an entire function $g\neq 0$ of exponential type vanishing on $W$, there is an entire function $f\neq 0$ of exponential type vanishing on $Z$ such that $|f|\leq |g|$ on the imaginary axis? The classical Malliavin-Rubel theorem of the early 1960s completely solves this problem for "positive" $Z$ and $W$ lying only on the positive semiaxis. A number of generalizations of this criterion were established by us in the late 1980s for "complex" $Z\subset\mathbb C$ and $W\subset\mathbb C$ separated by angles from the imaginary axis, with some advances in the 2020s. In this paper, tougher problems are solved in a more general subharmonic framework for distributions of masses on $\mathbb C$. All the previously mentioned results can be obtained from the main results of the paper in a much stronger form even in the initial formulation for distributions of points $Z$ and $W$ and entire functions $f$ and $g$ of exponential type. Some of the results of the article are closely related to the famous Beurling-Malliavin theorems on the radius of completeness and the multiplier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源