论文标题

了解组合拍卖中的核心约束与核心选择的付款规则之间的关系

Understanding the Relationship Between Core Constraints and Core-Selecting Payment Rules in Combinatorial Auctions

论文作者

Fritsch, Robin, Lee, Younjoo, Meier, Adrian, Wang, Ye, Wattenhofer, Roger

论文摘要

组合拍卖(CAS)允许投标人对拍卖的一系列商品束表达复杂的偏好。但是,在不同的付款规则下,投标人的行为通常不清楚。在本文中,我们旨在了解核心约束如何与不同核心选择的付款规则相互作用。特别是,我们研究了付款规则的自然和理想的不保证财产,该规则指出,竞标者不能通过增加投标来减少付款。先前的工作表明,通常,使用的VCG最新付款规则违反了一心一意的CAS中的不稳定财产。我们证明,在单个有效的核心约束下,VCG最新付款规则是不承担的。为了确定在哪些拍卖中发生单一有效核心约束,我们引入了一心一意的CAS的冲突图表示,并为CAS中的单个有效核心约束找到足够的条件。最后,我们研究了竞标者行为的后果,并表明任何NASH平衡中都不会有过度竞标,即可不利于核心选择的付款规则。

Combinatorial auctions (CAs) allow bidders to express complex preferences for bundles of goods being auctioned. However, the behavior of bidders under different payment rules is often unclear. In this paper, we aim to understand how core constraints interact with different core-selecting payment rules. In particular, we examine the natural and desirable non-decreasing property of payment rules, which states that bidders cannot decrease their payments by increasing their bids. Previous work showed that, in general, the widely used VCG-nearest payment rule violates the non-decreasing property in single-minded CAs. We prove that under a single effective core constraint, the VCG-nearest payment rule is non-decreasing. In order to determine in which auctions single effective core constraints occur, we introduce a conflict graph representation of single-minded CAs and find sufficient conditions for the single effective core constraint in CAs. Finally, we study the consequences on the behavior of the bidders and show that no over-bidding exists in any Nash equilibrium for non-decreasing core-selecting payment rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源