论文标题
CellDefectNet:用于基于电致发光的光伏细胞缺陷检查的机器设计的注意电容网络
CellDefectNet: A Machine-designed Attention Condenser Network for Electroluminescence-based Photovoltaic Cell Defect Inspection
论文作者
论文摘要
光伏电池是电子设备,可将光能转换为电能,形成太阳能收集系统的骨干。光伏细胞制造过程中的一个重要步骤是使用电致发光成像的视觉质量检查,以识别裂纹,手指中断和细胞损坏的缺陷。行业在光伏细胞视觉检查中面临的一个巨大挑战是,目前由人类检查员手动完成它,这非常耗时,费力且容易出现人为错误。尽管深度学习方法具有自动化此检查的巨大潜力,但硬件资源受限的制造场景使其在部署复杂的深神经网络体系结构方面具有挑战性。在这项工作中,我们介绍了CellDefectNet,这是一种通过机器驱动的设计勘探设计的高效注意冷凝器网络,专门针对基于电动性的光伏细胞缺陷检测到边缘上的检测。我们证明了CellDefectNet在基准数据集上的功效,该数据集由使用电发光图像捕获的各种光伏电池组成,达到〜86.3%的精度,仅具有410K参数,而仅具有410k参数(〜13美元$ \ tims $ \ tims Bat Timper y Timper y Timper y Timper Bats EfficitedNet-B0及其比$降低)和〜115m flops(〜115m flops(〜115m ties)(〜115m ties time)(〜115m tiee)(〜〜115m ties)(〜〜115m tiee)(〜〜115m fl fly)〜与EditivedNet-B0相比,ARM Cortex A-72嵌入式处理器的〜13 $ \ times $更快。
Photovoltaic cells are electronic devices that convert light energy to electricity, forming the backbone of solar energy harvesting systems. An essential step in the manufacturing process for photovoltaic cells is visual quality inspection using electroluminescence imaging to identify defects such as cracks, finger interruptions, and broken cells. A big challenge faced by industry in photovoltaic cell visual inspection is the fact that it is currently done manually by human inspectors, which is extremely time consuming, laborious, and prone to human error. While deep learning approaches holds great potential to automating this inspection, the hardware resource-constrained manufacturing scenario makes it challenging for deploying complex deep neural network architectures. In this work, we introduce CellDefectNet, a highly efficient attention condenser network designed via machine-driven design exploration specifically for electroluminesence-based photovoltaic cell defect detection on the edge. We demonstrate the efficacy of CellDefectNet on a benchmark dataset comprising of a diversity of photovoltaic cells captured using electroluminescence imagery, achieving an accuracy of ~86.3% while possessing just 410K parameters (~13$\times$ lower than EfficientNet-B0, respectively) and ~115M FLOPs (~12$\times$ lower than EfficientNet-B0) and ~13$\times$ faster on an ARM Cortex A-72 embedded processor when compared to EfficientNet-B0.