论文标题

显式关联双重混合DFT:对GMTKN55数据库基集合的综合分析

Explicitly correlated double hybrid DFT: a comprehensive analysis of the basis set convergence on the GMTKN55 database

论文作者

Mehta, Nisha, Martin, Jan M. L.

论文摘要

双杂交密度功能理论(DHDFT)为接近复合波函数方法等准确性提供了诸如G4理论之类的途径。但是,glpt2(g {Ö} rling第二阶扰动理论)术语使它们部分继承了慢速$ \ propto l^{ - 3} $(带有$ l $的最大角度动量)基集基集相关波函数方法的收敛。这可以通过引入F12显式相关性来解决这:我们研究了大型和化学多样的GMTKN55(一般的主基团热化学,动力学,动力学和非共价相互作用)的DHDFT和DHDFT-F12的基础集合。 B2GP-PLYP-D3(BJ)和RevDSD-PBEP86-D4双重混合密度函数(DHDFS)被研究为测试用例,以及轨道基集合的大于AUG-CC-PV5Z和F12基集,同样大于CC-PV(Q+D)Z-F12。我们表明,F12极大地加速了DHDF的基础集合,即使是适度的CC-PVDZ-F12基集,也比CC-PV(Q+D)Z或DEF2-QZVPP在Orbital基于Orbital的方法中的质量以及CC-PV(5+D)Z的质量相比,也比CC-PV(Q+D)或def2-qzvpp更接近基集限制。令人惊讶的是,即使对于阴离子子集,也不需要Aug-CC-PVDZ-F12。总之,DHDF-F12/VDZ-F12消除了对双杂交功能的开发和应用基础收敛的担忧。质量存储和较大系统的I/O瓶颈可以通过局部对天然轨道近似可以避免,这也表现出更宽容的系统尺寸缩放。

Double-hybrid density functional theory (DHDFT) offers a pathway to accuracies approaching composite wavefunction approaches like G4 theory. However, the GLPT2 (G{ö}rling 2nd order perturbation theory) term causes them to partially inherit the slow $\propto L^{-3}$ (with $L$ the maximum angular momentum) basis set convergence of correlated wavefunction methods. This could potentially be remedied by introducing F12 explicit correlation: we investigate the basis set convergence of both DHDFT and DHDFT-F12 for the large and chemically diverse GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) benchmark suite. The B2GP-PLYP-D3(BJ) and revDSD-PBEP86-D4 double hybrid density functionals (DHDFs) are investigated as test cases, together with orbital basis sets as large as aug-cc-pV5Z and F12 basis sets as large as cc-pV(Q+d)Z-F12. We show that F12 greatly accelerates basis set convergence of DHDFs, to the point that even the modest cc-pVDZ-F12 basis set is closer to the basis set limit than cc-pV(Q+d)Z or def2-QZVPP in orbital-based approaches, and in fact comparable in quality to cc-pV(5+d)Z. Somewhat surprisingly, aug-cc-pVDZ-F12 is not required even for the anionic subsets. In conclusion, DHDF-F12/VDZ-F12 eliminates concerns about basis set convergence in both the development and application of double-hybrid functionals. Mass storage and I/O bottlenecks for larger systems can be circumvented by localized pair natural orbital approximations, which also exhibit much gentler system size scaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源