论文标题

整数集合的公制可分解性定理

Metric decomposability theorems on sets of integers

论文作者

Bienvenu, P. -Y.

论文摘要

一组$ \ MATHCAL {A} \ subset \ Mathbb {n} $被称为可添加性可分解性(无渐近地分解性地分解),如果存在设置$ \ MATHCAL {B},\ MATHCAL {c} $ \ Mathcal {a} = \ Mathcal {B}+\ Mathcal {C} $(resp。$ \ Mathcal {A}δ(\ Mathcal {B}+\ Mathcal {C})$是有限的)。如果这些属性都不成立,则集合$ \ Mathcal {a} $称为完全原始。我们定义$ \ MATHBB {z} $ - 与subsets $ \ mathcal {a,b,c} $ of $ \ mathbb {z} $类似。 Wirsing表明,几乎所有$ \ Mathbb {n} $的子集都是完全原始的。在本文中,我们本着杂物的精神从概率的角度研究了可分解性。首先,我们证明$ \ mathbb {z} $的几乎所有对称子集都是$ \ mathbb {z} $ - decomposable。然后,我们证明了一组素数的几乎所有小扰动都产生了完全原始的集合。此外,当素数被两个正方形的总和取代时,最后结果仍然存在,这是可以解释的。

A set $\mathcal{A}\subset \mathbb{N}$ is called additively decomposable (resp. asymptotically additively decomposable) if there exist sets $\mathcal{B},\mathcal{C}\subset \mathbb{N}$ of cardinality at least two each such that $\mathcal{A}=\mathcal{B}+\mathcal{C}$ (resp. $\mathcal{A}Δ(\mathcal{B}+\mathcal{C})$ is finite). If none of these properties hold, the set $\mathcal{A}$ is called totally primitive. We define $\mathbb{Z}$-decomposability analogously with subsets $\mathcal{A,B,C}$ of $\mathbb{Z}$. Wirsing showed that almost all subsets of $\mathbb{N}$ are totally primitive. In this paper, in the spirit of Wirsing, we study decomposability from a probabilistic viewpoint. First, we show that almost all symmetric subsets of $\mathbb{Z}$ are $\mathbb{Z}$-decomposable. Then we show that almost all small perturbations of the set of primes yield a totally primitive set. Further, this last result still holds when the set of primes is replaced by the set of sums of two squares, which is by definition decomposable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源