论文标题

通过学习本地连接模式来完成网络

Completing Networks by Learning Local Connection Patterns

论文作者

Zhang, Zhang, Tao, Ruyi, Tao, Yongzai, Qi, Mingze, Zhang, Jiang

论文摘要

网络完成比链接预测更难的问题,因为它不仅尝试推断丢失的链接,还要推断节点。已经提出了不同的方法来解决此问题,但是很少有人使用结构信息 - 局部连接模式的相似性。在本文中,我们提出了一个名为C-gin的模型,以根据图形自动编码器框架从网络的观察到的部分捕获局部结构模式,该框架配备了图形同构网络模型,并概括了这些模式以完成整个图形。来自不同领域的合成和现实世界网络的实验和分析表明,C-Gin可以实现竞争性能,而所需的信息较少,并且与大多数情况下的基线预测模型相比,可以获得更高的准确性。我们进一步提出了一个基于网络结构的“可达聚类系数(CC)”。实验表明,我们的模型在具有较高可及的CC的网络上表现更好。

Network completion is a harder problem than link prediction because it does not only try to infer missing links but also nodes. Different methods have been proposed to solve this problem, but few of them employed structural information - the similarity of local connection patterns. In this paper, we propose a model named C-GIN to capture the local structural patterns from the observed part of a network based on the Graph Auto-Encoder framework equipped with Graph Isomorphism Network model and generalize these patterns to complete the whole graph. Experiments and analysis on synthetic and real-world networks from different domains show that competitive performance can be achieved by C-GIN with less information being needed, and higher accuracy compared with baseline prediction models in most cases can be obtained. We further proposed a metric "Reachable Clustering Coefficient(CC)" based on network structure. And experiments show that our model perform better on a network with higher Reachable CC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源