论文标题
PSR B0950+08的时间和演变
Timing and Evolution of PSR B0950+08
论文作者
论文摘要
我们提出了PSR B0950+08的定时解决方案,使用14年的Nanshan观察结果26-M 26-M Xinjiang天文天文台的射电望远镜。 PSR B0950+08的制动索引从-367 392到168 883不等,该振幅显示出大幅度($ \ sim 10^5 $)和不确定性。考虑到制动指数的变化以及PSR B0950+08的最可能的运动年龄,提出了一种具有长期磁场衰减的模型,该模型提出了通过短期振荡调制的长期磁场衰减,以解释定时数据。使用此磁场衰减模型,我们讨论了PSR B0950+08的自旋和热演化。还考虑了其年龄的不确定性。结果表明,对于PSR B0950+08的自旋频率衍生物分布而言,三组分振荡更为合理,而当年龄等于其KInematic Emagic年龄的年龄等于年龄时,PSR B0950+08的最初自旋时间必须短于$ 97 \ rm \ ms $。标准冷却模型可以解释其最可能的运动年龄的PSR B0950+08的表面温度。长期磁场衰减的涡旋蠕变加热可以在进化的后期保持相对较高的温度,并解释旧脉冲星的热发射数据。与长期磁场衰减结合,对PSR B0950+08的温度与旋转化学加热的解释需要一个令人难以置信的短初始旋转期($ p_0 \ lisesim 17 \ rm {ms {ms} $)。应同时研究脉冲星的自旋和热演化。未来的时机,紫外线或X射线观测对于研究脉冲星的进化和内部特性至关重要。
We present timing solutions of PSR B0950+08, using 14 years of observations at Nanshan 26-m Radio Telescope of Xinjiang Astronomical Observatory. The braking index of PSR B0950+08 varies from --367 392 to 168 883, which shows an oscillation with large amplitude ($\sim 10^5$) and uncertainty. Considering the variation of braking indices and the most probable kinematic age of PSR B0950+08, a model withe long-term magnetic field decay modulated by short-term oscillations is proposed to explain the timing data. With this magnetic field decay model, we discuss the spin and thermal evolution of PSR B0950+08. The uncertainties of its age are also considered. The results show that three-component oscillations are the more reasonable for the spin-frequency derivative distributions of PSR B0950+08, and the initial spin period of PSR B0950+08 must be shorter than $97\rm\ ms$ when the age is equal to the lower bound of its kinematic age. The standard cooling model could explain the surface temperature of PSR B0950+08 with its most probable kinematic age. Vortex creep heating with a long-term magnetic field decay could maintain a relatively high temperature at the later stages of evolution and explain the thermal emission data of old and warm pulsars. Coupling with the long-term magnetic field decay, an explanation of the temperature of PSR B0950+08 with roto-chemical heating needs an implausibly short initial rotation period ($P_0 \lesssim 17\rm{ ms}$). The spin and thermal evolution of pulsars should be studied simultaneously. Future timing, ultraviolet or X-ray observations are essential for studying the evolution and interior properties of pulsars.