论文标题
同时本地化和映射中的重新访问问题:视觉循环闭合检测的调查
The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on Visual Loop Closure Detection
论文作者
论文摘要
我在哪里?这是任何智能系统都应回答以决定是否导航到先前访问的地区的最关键问题之一。长期以来,这个问题在同时定位和映射(SLAM)方面具有挑战性的性质已被认可,其中机器人需要将传入的感官数据正确关联到数据库,从而允许一致的地图生成。在过去的20年中,计算机视觉的重大进展,计算能力的提高以及对长期探索的需求不断增长,有助于有效地使用廉价的感知传感器执行如此复杂的任务。在本文中,调查了仅根据外观输入数据制定解决方案的视觉循环闭合检测。我们首先简要介绍机器人技术中的位置识别和猛击概念。然后,我们描述了循环封闭检测系统的结构,涵盖了广泛的主题集合,包括特征提取,环境表示,决策步骤和评估过程。最后,我们讨论了开放和新的研究挑战,尤其是关于动态环境中的鲁棒性,计算复杂性和长期操作中的可扩展性。该文章旨在作为教程和位置论文,供新移民视觉循环封闭检测。
Where am I? This is one of the most critical questions that any intelligent system should answer to decide whether it navigates to a previously visited area. This problem has long been acknowledged for its challenging nature in simultaneous localization and mapping (SLAM), wherein the robot needs to correctly associate the incoming sensory data to the database allowing consistent map generation. The significant advances in computer vision achieved over the last 20 years, the increased computational power, and the growing demand for long-term exploration contributed to efficiently performing such a complex task with inexpensive perception sensors. In this article, visual loop closure detection, which formulates a solution based solely on appearance input data, is surveyed. We start by briefly introducing place recognition and SLAM concepts in robotics. Then, we describe a loop closure detection system's structure, covering an extensive collection of topics, including the feature extraction, the environment representation, the decision-making step, and the evaluation process. We conclude by discussing open and new research challenges, particularly concerning the robustness in dynamic environments, the computational complexity, and scalability in long-term operations. The article aims to serve as a tutorial and a position paper for newcomers to visual loop closure detection.