论文标题

QUERY2粒子:带有粒子嵌入的知识图推理

Query2Particles: Knowledge Graph Reasoning with Particle Embeddings

论文作者

Bai, Jiaxin, Wang, Zihao, Zhang, Hongming, Song, Yangqiu

论文摘要

在不完整的知识图(kgs)上回答复杂的逻辑查询是缺少边缘的,这是知识图推理的基本和重要任务。提出了查询嵌入方法,以通过将查询和实体共同编码相同的嵌入空间来回答这些查询。然后根据实体嵌入与查询嵌入之间的相似性选择答案实体。由于复杂查询的答案是从逻辑操作对子查询的组合获得的,因此答案实体的嵌入可能并不总是遵循嵌入式空间中的单模式分布。因此,使用单个和集中的查询表示,例如向量或超偏角,同时从嵌入空间中同时从嵌入空间中检索一组不同的答案是一个挑战。为了更好地应对具有多元化答案的查询,我们提出了一种复杂的kg查询答案方法(Q2P)。 Q2P将每个查询编码为多个向量,称为粒子嵌入。通过这样做,可以使用实体嵌入和任何粒子嵌入之间的最大相似性从嵌入空间的不同区域中检索候选答案。同时,定义了相应的神经逻辑操作以支持其在任意的一阶逻辑查询上的推理。该实验表明,Query2Particle在FB15K,FB15K-237和NELL知识图上的复杂查询回答任务上实现了最新的性能。

Answering complex logical queries on incomplete knowledge graphs (KGs) with missing edges is a fundamental and important task for knowledge graph reasoning. The query embedding method is proposed to answer these queries by jointly encoding queries and entities to the same embedding space. Then the answer entities are selected according to the similarities between the entity embeddings and the query embedding. As the answers to a complex query are obtained from a combination of logical operations over sub-queries, the embeddings of the answer entities may not always follow a uni-modal distribution in the embedding space. Thus, it is challenging to simultaneously retrieve a set of diverse answers from the embedding space using a single and concentrated query representation such as a vector or a hyper-rectangle. To better cope with queries with diversified answers, we propose Query2Particles (Q2P), a complex KG query answering method. Q2P encodes each query into multiple vectors, named particle embeddings. By doing so, the candidate answers can be retrieved from different areas over the embedding space using the maximal similarities between the entity embeddings and any of the particle embeddings. Meanwhile, the corresponding neural logic operations are defined to support its reasoning over arbitrary first-order logic queries. The experiments show that Query2Particles achieves state-of-the-art performance on the complex query answering tasks on FB15k, FB15K-237, and NELL knowledge graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源