论文标题
通过多策略社区与进化过程相关的链接预测方法来增强模棱两可的社区结构
Enhance Ambiguous Community Structure via Multi-strategy Community Related Link Prediction Method with Evolutionary Process
论文作者
论文摘要
大多数现实世界网络都遭受不完整或不正确性的影响,这是现实世界中数据集的固有属性。结果,像社区检测方法这样的复杂网络中的那些下游机器学习任务可能会产生较少的令人满意的结果,即,此处需要适当的预处理措施。为了解决这个问题,在本文中,我们设计了一个新的基于社区属性的链接预测策略HAP,并提出了一种基于HAP的自动进化过程的两步社区增强算法。本文旨在通过添加链接来阐明含糊的社区结构来提供社区增强措施。 HAP方法将邻里的不确定性和香农熵带来识别边界节点,并通过同时考虑节点的社区属性和社区规模来建立链接。具有地面真相社区的十二个现实世界数据集的实验结果表明,所提出的链接预测方法优于其他基线方法,而社区的增强遵循了预期的进化过程。
Most real-world networks suffer from incompleteness or incorrectness, which is an inherent attribute to real-world datasets. As a consequence, those downstream machine learning tasks in complex network like community detection methods may yield less satisfactory results, i.e., a proper preprocessing measure is required here. To address this issue, in this paper, we design a new community attribute based link prediction strategy HAP and propose a two-step community enhancement algorithm with automatic evolution process based on HAP. This paper aims at providing a community enhancement measure through adding links to clarify ambiguous community structures. The HAP method takes the neighbourhood uncertainty and Shannon entropy to identify boundary nodes, and establishes links by considering the nodes' community attributes and community size at the same time. The experimental results on twelve real-world datasets with ground truth community indicate that the proposed link prediction method outperforms other baseline methods and the enhancement of community follows the expected evolution process.