论文标题

关于轴对称的规律性,在四个和更高维

On the regularity of axisymmetric, swirl-free solutions of the Euler equation in four and higher dimensions

论文作者

Miller, Evan, Tsai, Tai-Peng

论文摘要

在本文中,我们考虑了四个和更高维度的Euler方程的轴对称,无漩涡的溶液。我们表明,在尺寸中$ d \ geq 4 $,轴对称,无漩涡的欧拉方程解决方案具有属性,可以允许在$ d = 3 $时排除形式的有限时间奇点形成,并且我们证明,我们证明了对eulere euler euler equeration in dememension in demension in dememension nidemention $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d \ de的有条件爆炸结果。必须在解决方案上施加的条件,以暗示爆炸变得较弱,因为$ d \ to +\ infty $,表明随着尺寸的增加,动态变得更加单数。

In this paper, we consider axisymmetric, swirl-free solutions of the Euler equation in four and higher dimensions. We show that in dimension $d\geq 4$, axisymmetric, swirl-free solutions of the Euler equation have properties which could allow finite-time singularity formation of a form that is excluded when $d=3$, and we prove a conditional blowup result for axisymmetric, swirl-free solutions of the Euler equation in dimension $d\geq 4$. The condition which must be imposed on the solution in order to imply blowup becomes weaker as $d\to +\infty$, suggesting the dynamics are becoming much more singular as the dimension increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源