论文标题

来自世界表的二等式传播器的一环图

One-loop diagrams with quadratic propagators from the worldsheet

论文作者

Feng, Bo, He, Song, Zhang, Yong, Zhang, Yao-Qi

论文摘要

众所周知,树级幅度的正向限制(以及它们包含的三价图)产生单环幅度和三价图,并在环动量中线性线性。它们自然是由一环的世界表格公式引起的,一个重要的开放问题是如何将它们重组为常规的单循环图,并使用二次传播器。在本文中,我们研究了一个新的世界表函数集合:具有张量分子的广义单环帕克泰勒因素,这些因素被认为是通过此良好属性的一环世界功能的基础。我们介绍了由任何一对Parke-Taylor因子产生的所有型号三价图表与二次传播器和张量分子的组合(包括可能的the术贡献)的所有封闭式表达式。我们还简要评论了将世界表函数降低到这样的基础上,并应用于物理理论中的一环幅度。

It is well known that forward limits of tree-level amplitudes (and those trivalent diagrams they consist of) produce one-loop amplitudes and trivalent diagrams with propagators linear in the loop momentum. They naturally arise from one-loop worldsheet formulae, and an important open problem is how to recombine them into usual one-loop diagrams with quadratic propagators. In this paper, we study a new collection of worldsheet functions: generalized one-loop Parke-Taylor factors with tensor numerators, which are conjectured to serve as a basis for one-loop worldsheet functions with this nice property. We present all-multiplicity, closed-form expressions for combinations of one-loop trivalent diagrams with quadratic propagators and tensor numerators to arbitrary rank (including possible tadpole contributions), produced by any pair of Parke-Taylor factors. We also briefly comment on reducing worldsheet functions onto such a basis, and applications to one-loop amplitudes in physical theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源