论文标题

医学图像denoising的对抗失真学习

Adversarial Distortion Learning for Medical Image Denoising

论文作者

Ghahremani, Morteza, Khateri, Mohammad, Sierra, Alejandra, Tohka, Jussi

论文摘要

我们提出了一种新颖的对抗失真学习(ADL),用于降级二维(2D/3D)生物医学图像数据。拟议的ADL由两个自动编码器组成:一个Deoiser和一个歧视者。 DeNoiser从输入数据中消除了噪声,并且鉴别器将其结果与无噪声的结果进行了比较。重复此过程,直到歧视器无法区分DeNo的数据与参考数据为止。 DeNoiser和歧视器均建立在提议的自动编码器上,称为效率 - Unet。有效的UNET具有轻型体系结构,该体系结构使用残留块和骨架中的新型金字塔方法来有效提取和重新使用特征图。在训练过程中,纹理信息和对比度由两个新型损失功能控制。有效UNET的结构允许将提出的方法概括为任何形式的生物医学数据。我们的网络的2D版本在Imagenet上进行了培训,并在生物医学数据集上进行了测试,其分布与Imagenet完全不同。因此,无需重新训练。在磁共振成像(MRI),皮肤镜检查,电子显微镜和X射线数据集上进行的实验结果表明,所提出的方法在每个基准测试中都达到了最佳。我们的实施和预培训模型可在https://github.com/mogvision/adl上找到。

We present a novel adversarial distortion learning (ADL) for denoising two- and three-dimensional (2D/3D) biomedical image data. The proposed ADL consists of two auto-encoders: a denoiser and a discriminator. The denoiser removes noise from input data and the discriminator compares the denoised result to its noise-free counterpart. This process is repeated until the discriminator cannot differentiate the denoised data from the reference. Both the denoiser and the discriminator are built upon a proposed auto-encoder called Efficient-Unet. Efficient-Unet has a light architecture that uses the residual blocks and a novel pyramidal approach in the backbone to efficiently extract and re-use feature maps. During training, the textural information and contrast are controlled by two novel loss functions. The architecture of Efficient-Unet allows generalizing the proposed method to any sort of biomedical data. The 2D version of our network was trained on ImageNet and tested on biomedical datasets whose distribution is completely different from ImageNet; so, there is no need for re-training. Experimental results carried out on magnetic resonance imaging (MRI), dermatoscopy, electron microscopy and X-ray datasets show that the proposed method achieved the best on each benchmark. Our implementation and pre-trained models are available at https://github.com/mogvision/ADL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源