论文标题
在庞加莱球体和pancharatnam-berry阶段的单一和非独立操作,带有$ \ mathbf {z} $矩阵
Unitary and non-unitary operations on the Poincaré sphere and Pancharatnam-Berry phase with $\mathbf{Z}$ matrices
论文作者
论文摘要
琼斯矩阵可以在极化光学元件中统一和非自动操作。 $ \ mathbf {z} $矩阵是$ 4 \ times 4 $ jones矩阵的类似物,而非应波光学介质的mueller矩阵可以写为$ \ mathbf {m mathbf {m} = \ mathbf {z} {z} \ mathbf {z}^^*$。琼斯矩阵作用于两个组件复杂的琼斯矢量,而$ \ mathbf {z} $矩阵对四个组件真实的stokes vector作用。偏振器和降低器$ \ mathbf {z} $矩阵可以根据庞加莱球体上位置向量的组件以紧凑的形式写成。在本说明中,可以显示pancharatnam-berry几何阶段可以通过统一和非单身$ \ mathbf {z} $矩阵操作来证明。
In polarization optics unitary and non-unitary operations can be carried out by the Jones matrix. $\mathbf{Z}$ matrix is the $4\times 4$ analogue of the Jones matrix and the Mueller matrix of a nondepolarizing optical medium can be written as $\mathbf{M}=\mathbf{Z}\mathbf{Z}^*$. Jones matrix acts on the two component complex Jones vector, while the $\mathbf{Z}$ matrix acts on the four component real Stokes vector. Polarizer and retarder $\mathbf{Z}$ matrices can be written in compact forms in terms of the components of the position vector on the Poincaré sphere. In this note it is shown that the Pancharatnam-Berry geometric phase can be demonstrated by unitary and non-unitary $\mathbf{Z}$ matrix operations.