论文标题
了解激发的CNN
Understanding CNNs from excitations
论文作者
论文摘要
事实证明,显着图是一种高效的方法,用于阐明卷积神经网络的决策。但是,现存的方法主要依赖于梯度,这限制了其解释复杂模型的能力。此外,这种方法并不完全擅长利用负面梯度信息来改善解释性的真实性。在这项研究中,我们提出了一个新颖的概念,称为阳性和阴性激发,该概念可以直接提取每一层的阳性和负激励,从而实现了无层信息的完整信息利用率,而无需梯度。为了将这些激励组织到最终的显着图中,我们引入了双链返回程序。进行了全面的实验评估,包括二进制分类和多分类任务,以评估我们提出的方法的有效性。令人鼓舞的是,结果表明我们的方法在显着像素的去除,次要像素删除和不起眼的对抗性扰动生成指导方面对最先进的方法有了显着改善。此外,我们验证了正激发和负面激发之间的相关性。
Saliency maps have proven to be a highly efficacious approach for explicating the decisions of Convolutional Neural Networks. However, extant methodologies predominantly rely on gradients, which constrain their ability to explicate complex models. Furthermore, such approaches are not fully adept at leveraging negative gradient information to improve interpretive veracity. In this study, we present a novel concept, termed positive and negative excitation, which enables the direct extraction of positive and negative excitation for each layer, thus enabling complete layer-by-layer information utilization sans gradients. To organize these excitations into final saliency maps, we introduce a double-chain backpropagation procedure. A comprehensive experimental evaluation, encompassing both binary classification and multi-classification tasks, was conducted to gauge the effectiveness of our proposed method. Encouragingly, the results evince that our approach offers a significant improvement over the state-of-the-art methods in terms of salient pixel removal, minor pixel removal, and inconspicuous adversarial perturbation generation guidance. Additionally, we verify the correlation between positive and negative excitations.