论文标题

实践中的数据正义:开发人员指南

Data Justice in Practice: A Guide for Developers

论文作者

Leslie, David, Katell, Michael, Aitken, Mhairi, Singh, Jatinder, Briggs, Morgan, Powell, Rosamund, Rincón, Cami, Perini, Antonella, Jayadeva, Smera, Burr, Christopher

论文摘要

进步的数据正义研究和实践项目旨在扩大对有助于歧视和不平等的社会,历史,文化,政治和经济力量的理解,这是当代数据收集,治理和使用的当代生态的。这是针对开发人员和组织指南的咨询草案,该指南正在生产,采购或使用数据密集型技术。在第一部分,我们介绍了数据正义领域,从其早期讨论到最近的提案,以重新安置对数据正义意味着什么的理解。本节包括对本指南围绕的六个数据正义支柱的描述。接下来,为了支持开发人员设计,开发和部署负责任的数据密集型和AI/ML系统,我们通过社会技术镜头概述了AI/ML项目生命周期。为了支持整个AI/ML生命周期以及数据创新生态系统中的操作数据正义,然后我们介绍了负责任,公平和值得信赖的数据研究和创新实践的五个总体原则,Safe-Drimens-Drimens-Saftles-Saftles-Saftles-Saftles-Saftles-Saftles,问责,公平性,公平性,解释性,质量,完整性,完整性,完整性,综合性,保护和隐私和隐私和隐私和隐私和隐私性。最后一部分提出了指导性问题,将有助于开发人员在AI/ML生命周期内解决数据正义问题,并从事反思性创新实践,以确保设计,开发和部署负责任且公平的数据密集型和AI/ML系统。

The Advancing Data Justice Research and Practice project aims to broaden understanding of the social, historical, cultural, political, and economic forces that contribute to discrimination and inequity in contemporary ecologies of data collection, governance, and use. This is the consultation draft of a guide for developers and organisations, which are producing, procuring, or using data-intensive technologies.In the first section, we introduce the field of data justice, from its early discussions to more recent proposals to relocate understandings of what data justice means. This section includes a description of the six pillars of data justice around which this guidance revolves. Next, to support developers in designing, developing, and deploying responsible and equitable data-intensive and AI/ML systems, we outline the AI/ML project lifecycle through a sociotechnical lens. To support the operationalisation data justice throughout the entirety of the AI/ML lifecycle and within data innovation ecosystems, we then present five overarching principles of responsible, equitable, and trustworthy data research and innovation practices, the SAFE-D principles-Safety, Accountability, Fairness, Explainability, and Data Quality, Integrity, Protection, and Privacy. The final section presents guiding questions that will help developers both address data justice issues throughout the AI/ML lifecycle and engage in reflective innovation practices that ensure the design, development, and deployment of responsible and equitable data-intensive and AI/ML systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源