论文标题

在宇宙学有效的领域理论中出现的不稳定性:何时以及如何?

Instabilities Appearing in Cosmological Effective Field theories: When and How?

论文作者

Eckmann, Jean-Pierre, Hassani, Farbod, Zaag, Hatem

论文摘要

非线性偏微分方程出现在许多物理领域中,我们在这里研究了一个典型的方程式,人们在有效的现场理论(EFT)中发现源自宇宙学研究。特别是,我们对等式$ \ partial_t^2 u(x,t)=α(\ partial_x u(x,x,t))^2 +β\ partial_x^2 u(x,t)$ in $ 1 +1 $尺寸。众所周知,在有限的时间($α> 0 $)的有限时间内解决该方程式的解决方案。我们研究这种分歧的性质,这是参数$α> 0 $和$β\ ge0 $的函数。即使$β$与可能相信的很大,差异也不会消失(注意,由于我们考虑固定的初始数据,因此$α$和$β$无法缩放)。但是,当$α$固定时,出现$β$的增加将需要更长的时间。我们注意到有两种类型的差异,我们讨论了这两个差异作为参数选择的函数。除非对相应的方程式进行了修改,否则不可避免的爆炸是不可避免的。我们的结果扩展到$ 3+1 $尺寸。

Nonlinear partial differential equations appear in many domains of physics, and we study here a typical equation which one finds in effective field theories (EFT) originated from cosmological studies. In particular, we are interested in the equation $\partial_t^2 u(x,t) = α(\partial_x u(x,t))^2 +β\partial_x^2 u(x,t)$ in $1+1$ dimensions. It has been known for quite some time that solutions to this equation diverge in finite time, when $α>0$. We study the nature of this divergence as a function of the parameters $α>0 $ and $β\ge0$. The divergence does not disappear even when $β$ is very large contrary to what one might believe (note that since we consider fixed initial data, $α$ and $β$ cannot be scaled away). But it will take longer to appear as $β$ increases when $α$ is fixed. We note that there are two types of divergence and we discuss the transition between these two as a function of parameter choices. The blowup is unavoidable unless the corresponding equations are modified. Our results extend to $3+1$ dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源