论文标题
Leximax近似值和代表性队列选择
Leximax Approximations and Representative Cohort Selection
论文作者
论文摘要
从广泛的候选人中找到代表队列是在许多情况下出现的目标,例如选择理事委员会和消费者小组。尽管有很多方法可以定义队列代表人口的程度,但一个非常有吸引力的解决方案概念是词素最大值(Leximax),它提供了一种自然的(帕托特(Pareto)的类似)解释,即不减少已经更糟的人口效用而不会增加人口的实用性。但是,找到Leximax解决方案可以高度取决于某些组效用的较小变化。在这项工作中,我们探索了具有三种不同动机的近似Leximax解决方案的新概念:更好的算法效率,利用显着的效用改进和噪声的鲁棒性。在其他定义贡献中,我们给出了一个近似Leximax的新概念,该概念满足了类似吸引人的语义解释,并将其与算法上可行的近似Leximax概念相关联。当组实用程序是在队列候选者上是线性的时,我们给出了一种有效的多项式时间算法,用于在确切和近似环境中在同类候选者上找到leximax分布。此外,我们表明,找到使用线性实用程序的Leximax队列选择的整数解决方案是NP-HARD。
Finding a representative cohort from a broad pool of candidates is a goal that arises in many contexts such as choosing governing committees and consumer panels. While there are many ways to define the degree to which a cohort represents a population, a very appealing solution concept is lexicographic maximality (leximax) which offers a natural (pareto-optimal like) interpretation that the utility of no population can be increased without decreasing the utility of a population that is already worse off. However, finding a leximax solution can be highly dependent on small variations in the utility of certain groups. In this work, we explore new notions of approximate leximax solutions with three distinct motivations: better algorithmic efficiency, exploiting significant utility improvements, and robustness to noise. Among other definitional contributions, we give a new notion of an approximate leximax that satisfies a similarly appealing semantic interpretation and relate it to algorithmically-feasible approximate leximax notions. When group utilities are linear over cohort candidates, we give an efficient polynomial-time algorithm for finding a leximax distribution over cohort candidates in the exact as well as in the approximate setting. Furthermore, we show that finding an integer solution to leximax cohort selection with linear utilities is NP-Hard.