论文标题

RIS-NOMA的智能轨迹设计辅助多机器人通信

Intelligent Trajectory Design for RIS-NOMA aided Multi-robot Communications

论文作者

Gao, Xinyu, Mu, Xidong, Yi, Wenqiang, Liu, Yuanwei

论文摘要

提出了一种新型可重构智能表面辅助的多机器人网络,其中多个移动机器人通过非正交多重访问(NOMA)提供了多个移动机器人(AP)。目的是通过共同优化机器人的轨迹和NOMA解码顺序,RIS的相移系数以及AP的功率分配,以预测的机器人的初始和最终位置以及每个机器人的服务质量(QOS),从而最大化多机器人系统的整个轨迹总和。为了解决此问题,提出了一个集成的机器学习(ML)方案,该方案结合了长期记忆(LSTM) - 自动进取的集成移动平均线(ARIMA)模型和对抗双重Q-network(D $^{3} $ QN)算法。对于机器人的初始和最终位置预测,LSTM-Arima能够克服非平稳和非线性数据序列的梯度销售问题。为了共同确定相移矩阵和机器人的轨迹,调用了D $^{3} $ qn来解决动作值高估的问题。基于提议的方案,每个机器人都基于整个轨迹的最大总和率具有最佳轨迹,该轨迹揭示了机器人为整个轨迹设计追求长期福利。数值结果表明:1)LSTM-ARIMA模型提供了高精度预测模型; 2)提出的d $^{3} $ qn算法可以实现快速平均收敛; 3)与RIS AID的正交对应物相比,RIS-Noma网络的网络性能卓越。

A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$^{3}$QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots' trajectories, D$^{3}$QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed D$^{3}$QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源