论文标题

Krylov-Aware Antakatic痕量估计

Krylov-aware stochastic trace estimation

论文作者

Chen, Tyler, Hallman, Eric

论文摘要

我们介绍了一种算法,用于估算使用具有对称矩阵$ \ Mathbf {a} $的隐式产品的矩阵函数$ f(\ mathbf {a})$的跟踪。矩阵函数隐式跟踪估计的现有方法倾向于以$ f(\ mathbf {a} $作为黑框处理矩阵 - 矢量产物,以通过Krylov子空间方法计算。像其他最近的隐性痕量估计算法一样,我们的方法基于通缩和随机痕量估计的组合。但是,我们仔细研究了如何将$ f(\ mathbf {a})$集成到这些方法中的产品如何使以前研究的方法中不存在几种效率。特别是,我们描述了一种Krylov子空间方法,用于通过计算有效投影在Krylov子空间上计算矩阵函数的低级别近似值。

We introduce an algorithm for estimating the trace of a matrix function $f(\mathbf{A})$ using implicit products with a symmetric matrix $\mathbf{A}$. Existing methods for implicit trace estimation of a matrix function tend to treat matrix-vector products with $f(\mathbf{A})$ as a black-box to be computed by a Krylov subspace method. Like other recent algorithms for implicit trace estimation, our approach is based on a combination of deflation and stochastic trace estimation. However, we take a closer look at how products with $f(\mathbf{A})$ are integrated into these approaches which enables several efficiencies not present in previously studied methods. In particular, we describe a Krylov subspace method for computing a low-rank approximation of a matrix function by a computationally efficient projection onto Krylov subspace.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源