论文标题

多粒性语义意识图形模型,用于减少情绪因子对提取的位置偏差

Multi-Granularity Semantic Aware Graph Model for Reducing Position Bias in Emotion-Cause Pair Extraction

论文作者

Bao, Yinan, Ma, Qianwen, Wei, Lingwei, Zhou, Wei, Hu, Songlin

论文摘要

情绪原因对提取(ECPE)任务旨在从文档中提取情绪和原因。我们观察到,在典型的ECPE数据集中,情绪和原因的相对距离分布极为不平衡。现有方法设置了一个固定的大小窗口,以捕获相邻子句之间的关系。但是,他们忽略了遥远条款之间的有效语义联系,从而导致对位置不敏感数据的概括能力差。为了减轻问题,我们提出了一种新型的多晶格语义意识图模型(MGSAG),以共同结合细粒度和粗粒的语义特征,而无需距离限制。特别是,我们首先探索从子句和从传达细粒语义特征的文档中提取的关键字之间的语义依赖性,从而获得关键字增强子句表示。此外,还建立了子句图,以模拟条款之间的粗粒语义关系。实验结果表明,MGSAG超过了现有的最新ECPE模型。特别是,MGSAG在不敏感数据的条件下大大优于其他模型。

The Emotion-Cause Pair Extraction (ECPE) task aims to extract emotions and causes as pairs from documents. We observe that the relative distance distribution of emotions and causes is extremely imbalanced in the typical ECPE dataset. Existing methods have set a fixed size window to capture relations between neighboring clauses. However, they neglect the effective semantic connections between distant clauses, leading to poor generalization ability towards position-insensitive data. To alleviate the problem, we propose a novel Multi-Granularity Semantic Aware Graph model (MGSAG) to incorporate fine-grained and coarse-grained semantic features jointly, without regard to distance limitation. In particular, we first explore semantic dependencies between clauses and keywords extracted from the document that convey fine-grained semantic features, obtaining keywords enhanced clause representations. Besides, a clause graph is also established to model coarse-grained semantic relations between clauses. Experimental results indicate that MGSAG surpasses the existing state-of-the-art ECPE models. Especially, MGSAG outperforms other models significantly in the condition of position-insensitive data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源