论文标题

设计目标成就指数:一种可区分的指标,可增强多目标逆设计中的深层生成模型

Design Target Achievement Index: A Differentiable Metric to Enhance Deep Generative Models in Multi-Objective Inverse Design

论文作者

Regenwetter, Lyle, Ahmed, Faez

论文摘要

由于其学习能力和模仿复杂的数据分布的能力,深层生成机器学习模型在整个设计社区中的流行一直在越来越流行。尽管早期工作是有希望的,但进一步的进步将取决于解决一些关键考虑因素,例如设计质量,可行性,新颖性和有针对性的逆设计。我们提出了设计目标成就指数(DTAI),这是一种可区分的可调指标,可评估设计实现设计师指定的最低性能目标的能力。我们证明,当直接用作深层生成模型的训练损失时,DTAI可以大大提高生成的设计的性能。我们将DTAI损失应用于性能增强的多种甘恩(Padgan),与一组基线深的生成模型相比,具有出色的生成性能,包括多目标padgan和专业的表格产生算法,例如条件表格gan(ctgan)。我们通过辅助可行性分类器进一步增强Padgan,以鼓励可行设计。为了评估方法,我们建议一组全面的评估指标,以关注设计性能目标的可行性,多样性和满意度的生成方法。在一个具有挑战性的基准问题上测试了方法:带有混合数据类型参数数据的框架自行车框架设计数据集,偏斜和多模式分布以及十个竞争性绩效目标。

Deep Generative Machine Learning Models have been growing in popularity across the design community thanks to their ability to learn and mimic complex data distributions. While early works are promising, further advancement will depend on addressing several critical considerations such as design quality, feasibility, novelty, and targeted inverse design. We propose the Design Target Achievement Index (DTAI), a differentiable, tunable metric that scores a design's ability to achieve designer-specified minimum performance targets. We demonstrate that DTAI can drastically improve the performance of generated designs when directly used as a training loss in Deep Generative Models. We apply the DTAI loss to a Performance-Augmented Diverse GAN (PaDGAN) and demonstrate superior generative performance compared to a set of baseline Deep Generative Models including a Multi-Objective PaDGAN and specialized tabular generation algorithms like the Conditional Tabular GAN (CTGAN). We further enhance PaDGAN with an auxiliary feasibility classifier to encourage feasible designs. To evaluate methods, we propose a comprehensive set of evaluation metrics for generative methods that focus on feasibility, diversity, and satisfaction of design performance targets. Methods are tested on a challenging benchmarking problem: the FRAMED bicycle frame design dataset featuring mixed-datatype parametric data, heavily skewed and multimodal distributions, and ten competing performance objectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源