论文标题

用基于视觉的深度学习量化机器人手术

Quantification of Robotic Surgeries with Vision-Based Deep Learning

论文作者

Kiyasseh, Dani, Ma, Runzhuo, Haque, Taseen F., Nguyen, Jessica, Wagner, Christian, Anandkumar, Animashree, Hung, Andrew J.

论文摘要

手术是一个高风险的领域,外科医生必须在关键的解剖结构中导航,并在完成手头的主要任务时积极避免潜在的并发症。这种手术活性已被证明会影响长期的患者结局。为了更好地理解这种关系,在大多数外科手术程序中,其力学仍然未知,我们假设必须首先以可靠,客观和可扩展的方式量化手术的核心要素。我们认为,这是提供手术反馈和外科医生表现调节以追求改善患者预后的先决条件。为了整体量化手术,我们提出了一个名为Roboformer的统一深度学习框架,该框架仅在手术期间记录的视频中运行,以独立完成多个任务:手术期识别(手术),手势分类和技能评估(手术方法)。我们验证了我们在微型侵入性机器人手术中的两种常见类型的步骤(解剖和缝合)的两个基于视频的数据集上验证了我们的框架。我们证明,我们的框架可以很好地概括为看不见的视频,外科医生,医疗中心和外科手术程序。我们还发现,我们的框架自然可以解释发现,并在完成特定任务时确定了相关信息。这些发现可能会使外科医生对我们框架的行为更有信心,从而增加了临床采用的可能性,从而为更具针对性的手术反馈铺平了道路。

Surgery is a high-stakes domain where surgeons must navigate critical anatomical structures and actively avoid potential complications while achieving the main task at hand. Such surgical activity has been shown to affect long-term patient outcomes. To better understand this relationship, whose mechanics remain unknown for the majority of surgical procedures, we hypothesize that the core elements of surgery must first be quantified in a reliable, objective, and scalable manner. We believe this is a prerequisite for the provision of surgical feedback and modulation of surgeon performance in pursuit of improved patient outcomes. To holistically quantify surgeries, we propose a unified deep learning framework, entitled Roboformer, which operates exclusively on videos recorded during surgery to independently achieve multiple tasks: surgical phase recognition (the what of surgery), gesture classification and skills assessment (the how of surgery). We validated our framework on four video-based datasets of two commonly-encountered types of steps (dissection and suturing) within minimally-invasive robotic surgeries. We demonstrated that our framework can generalize well to unseen videos, surgeons, medical centres, and surgical procedures. We also found that our framework, which naturally lends itself to explainable findings, identified relevant information when achieving a particular task. These findings are likely to instill surgeons with more confidence in our framework's behaviour, increasing the likelihood of clinical adoption, and thus paving the way for more targeted surgical feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源