论文标题
研究大规模扩展Granger因果关系(LSXGC)在合成功能MRI数据上
Investigation of large-scale extended Granger causality (lsXGC) on synthetic functional MRI data
论文作者
论文摘要
在多元观察时间序列中推断因果关系是一项具有挑战性的研究努力。此类数据可以用图表示,其中节点代表时间序列,而边缘则指向其之间的因果影响分数。如果节点的数量超过时间观察的数量,则常规方法(例如标准Granger因果关系)的价值有限,因为估计时间序列预测因子的免费参数会导致不确定的问题。这种情况的一个典型例子是功能性磁共振成像(fMRI),其中节点观察的数量很大,通常从$ 10^2 $到$ 10^5 $的时间序列,而时间观察的数量则低,通常小于$ 10^3 $。因此,需要创新的方法来应对此类数据集引起的挑战。最近,我们提出了大规模扩展的Granger因果关系(LSXGC)算法,该算法是基于通过补充从原始输入空间中获得的条件源时间序列的数据来增强尺寸降低系统状态空间的表示。在这里,我们将LSXGC应用于具有已知地面真理的合成fMRI数据,并通过利用信息理论方法的好处来比较其性能与最先进的方法。我们的结果表明,提出的LSXGC方法在接收器操作特征下的诊断准确性(AUROC = $ 0.849 $ vs.〜 $ vs.〜 $ [0.727,0.762] $的诊断准确性都大大优于现有方法,用于竞争方法,$ p <\!10^{ - 8} $ $ 9 $ 9.4 $9。 10^3 $] SEC用于竞争方法)基准,证明了LSXGC在人脑神经影像学研究中分析大规模网络的潜力。
It is a challenging research endeavor to infer causal relationships in multivariate observational time-series. Such data may be represented by graphs, where nodes represent time-series, and edges directed causal influence scores between them. If the number of nodes exceeds the number of temporal observations, conventional methods, such as standard Granger causality, are of limited value, because estimating free parameters of time-series predictors lead to underdetermined problems. A typical example for this situation is functional Magnetic Resonance Imaging (fMRI), where the number of nodal observations is large, usually ranging from $10^2$ to $10^5$ time-series, while the number of temporal observations is low, usually less than $10^3$. Hence, innovative approaches are required to address the challenges arising from such data sets. Recently, we have proposed the large-scale Extended Granger Causality (lsXGC) algorithm, which is based on augmenting a dimensionality-reduced representation of the system's state-space by supplementing data from the conditional source time-series taken from the original input space. Here, we apply lsXGC on synthetic fMRI data with known ground truth and compare its performance to state-of-the-art methods by leveraging the benefits of information-theoretic approaches. Our results suggest that the proposed lsXGC method significantly outperforms existing methods, both in diagnostic accuracy with Area Under the Receiver Operating Characteristic (AUROC = $0.849$ vs.~$[0.727, 0.762]$ for competing methods, $p<\!10^{-8}$), and computation time ($3.4$ sec vs.~[$9.7$, $4.8 \times 10^3$] sec for competing methods) benchmarks, demonstrating the potential of lsXGC for analyzing large-scale networks in neuroimaging studies of the human brain.