论文标题
奥氏体不锈钢310S钢的强度和硬化机制:纳米构造实验和多尺度建模
Mechanisms of strength and hardening in austenitic stainless 310S steel: Nanoindentation experiments and multiscale modeling
论文作者
论文摘要
低碳的奥氏体不锈钢具有出色的机械性能,并且由于高铬和镍合金构成而能够减少脆化,因此它们在极端环境中对于有效的能源产生非常有吸引力。对铬的作用和特定合金组成的形式进行纳米力学研究是至关重要的,从而产生了钢的出色机械性能。我们使用已建立的原子质潜能对FCC奥斯丁构不锈钢310S进行纳米引导实验和分子动力学(MD)模拟,并且我们将Nife固定溶液在相似条件下的塑性行为进行比较,以阐明关键脱位机制。我们将EBSD图像结合在一起,将晶体取向连接到纳米识别结果,并将输入数据提供给MD模拟,以建模缺陷的成核和相互作用的机制。纳米引导后的印象图表明,310S钢中的Ni-Fe-CR组成导致应变定位和硬化。对不同深度的错位动力学的详细分析导致了实验一致的基于Kocks-Kocks-Kocks的连续体多尺度模型的发展。此外,对几何必要的脱位(GND)的分析表明,在低深度下,由Ma-Clarke的组成型模型预测,负责出色的硬度。
Austenitic stainless steels with low carbon have exceptional mechanical properties and are capable to reduce embrittlement, due to high chromium and nickel alloying, thus they are very attractive for efficient energy production in extreme environments. It is key to perform nanomechanical investigations of the role of chromium and the form of the particular alloy composition that give rise to the excellent mechanical properties of steel. We perform nanoindentation experiments and molecular dynamics (MD) simulations of FCC austenitic stainless steel 310S, using established interatomic potentials, and we use a comparison to the plastic behavior of NiFe solid solutions under similar conditions for the elucidation of key dislocation mechanisms. We combine EBSD images to connect crystalline orientations to nanoindentation results, and provide input data to MD simulations for modeling mechanisms of defects nucleation and interactions. The maps of impressions after nanoindentation indicate that the Ni-Fe-Cr composition in 310S steel leads to strain localization and hardening. A detailed analysis of the dislocation dynamics at different depths leads to the development of an experimentally consistent Kocks-Mecking-based continuum multiscale model. Furthermore, the analysis of geometrically necessary dislocations (GND) shows to be responsible for exceptional hardness at low depths, predicted by the Ma-Clarke's constitutive model.