论文标题

治愈隐私:功能性加密和保护分析

Heal the Privacy: Functional Encryption and Privacy-Preserving Analytics

论文作者

Bakas, Alexandros, Michalas, Antonis

论文摘要

安全云存储是一个至关重要的问题,在将数据移至可能不受信任的云之前,企业和最终用户都应考虑到这两个问题。将数据迁移到云中会引发多个隐私问题,因为它们完全由云提供商控制。因此,不受信任的云提供商可能会违反用户;隐私并访问敏感信息。当需要提供者存储统计数据库并定期发布分析时,问题就变得更加明显。在这项工作中,我们首先提出一个详细的例子,表明使用密码学不足以确保个人的隐私。然后,我们基于功能加密和差异隐私设计了一个混合协议,该协议允许以隐私性的方式计算统计信息。

Secure cloud storage is an issue of paramount importance that both businesses and end-users should take into consideration before moving their data to, potentially, untrusted clouds. Migrating data to the cloud raises multiple privacy issues, as they are completely controlled by a cloud provider. Hence, an untrusted cloud provider can potentially breach users; privacy and gain access to sensitive information. The problem becomes even more pronounced when the could provider is required to store a statistical database and periodically publish analytics. In this work, we first present a detailed example showing that the use of cryptography is not enough to ensure the privacy of individuals. Then, we design a hybrid protocol based on Functional Encryption and Differential Privacy that allows the computations of statistics in a privacy-preserving way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源