论文标题
合成反铁磁铁纳米线中低电流密度的域壁运动
Domain wall motion at low current density in a synthetic antiferromagnet nanowire
论文作者
论文摘要
磁性域壁(DWS)的电流驱动运动是磁性赛道记忆的工作原理。在这种类型的自旋技术中,高电流密度用于在磁性纳米线中推动DW运动,从而导致大量的电线加热。已知合成反铁磁铁在高电流密度下显示出非常快速的DW运动,但运动发作周围发作周围的电流密度较低。在这里,我们使用扫描传输X射线显微镜研究SAF多层对电流中DW的响应。我们观察到,$ \ sim 3 \ times 10^{11} $ 〜a/m $ $^2 $的DWS depin比在可比的传统多层中比5〜ns持续时间的脉冲更快地移动。结果表明,SAF结构中的DWS优于传统的NéelDWS,用于低能消耗赛车技术。
The current-driven motion of magnetic domain walls (DWs) is the working principle of magnetic racetrack memories. In this type of spintronic technology, high current densities are used to propel DW motion in magnetic nanowires, causing significant wire heating. Synthetic antiferromagnets are known to show very fast DW motion at high current densities, but lower current densities around onset of motion have received less attention. Here we use scanning transmission x-ray microscopy to study the response of DWs in a SAF multilayer to currents. We observe that the DWs depin at $\sim 3 \times 10^{11}$~A/m$^2$ and move more quickly in response to 5~ns duration current pulses than in comparable conventional multilayers. The results suggest that DWs in SAF structures are superior to conventional Néel DWs for low energy consumption racetrack technologies.