论文标题

联合渠道学习,用于智能反射表面的飞行员信号较少

Federated Channel Learning for Intelligent Reflecting Surfaces With Fewer Pilot Signals

论文作者

Elbir, Ahmet M., Coleri, Sinem, Mishra, Kumar Vijay

论文摘要

频道估计是智能反射表面(IRS)辅助无线系统的关键任务,这是由于环境动态和IRS配置的快速变化所施加的不确定性。为了处理这些不确定性,已经提出了深度学习(DL)的方法。以前的工作考虑了用于模型培训的集中学习方法(CL)方法,这需要从基站(BS)的用户收集整个培训数据集,因此引入了巨大的传输开销以进行数据收集。为了应对这一挑战,本文提出了一个联合学习(FL)框架,以共同估计IRS辅助无线系统中的直接和级联渠道。我们设计了一个在用户本地数据集中训练的单一卷积神经网络,而无需将其发送到BS。我们表明,拟议的基于FL的通道估计方法需要少60%的飞行员信号,并且它的传输开销比CL低12倍,同时保持接近CL的令人满意的性能。此外,它提供的估计误差低于基于DL的最新方案。

Channel estimation is a critical task in intelligent reflecting surface (IRS)-assisted wireless systems due to the uncertainties imposed by environment dynamics and rapid changes in the IRS configuration. To deal with these uncertainties, deep learning (DL) approaches have been proposed. Previous works consider centralized learning (CL) approach for model training, which entails the collection of the whole training dataset from the users at the base station (BS), hence introducing huge transmission overhead for data collection. To address this challenge, this paper proposes a federated learning (FL) framework to jointly estimate both direct and cascaded channels in IRS-assisted wireless systems. We design a single convolutional neural network trained on the local datasets of the users without sending them to the BS. We show that the proposed FL-based channel estimation approach requires approximately 60% fewer pilot signals and it exhibits 12 times lower transmission overhead than CL, while maintaining satisfactory performance close to CL. In addition, it provides lower estimation error than the state-of-the-art DL-based schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源