论文标题

OMU:一个概率的3D占用映射加速器,用于实时OCTOMAP

OMU: A Probabilistic 3D Occupancy Mapping Accelerator for Real-time OctoMap at the Edge

论文作者

Jia, Tianyu, Yang, En-Yu, Hsiao, Yu-Shun, Cruz, Jonathan, Brooks, David, Wei, Gu-Yeon, Reddi, Vijay Janapa

论文摘要

自主机(例如车辆,移动机器人,无人机)需要复杂的3D映射才能感知动态环境。但是,在计算和内存需求方面,维护实时3D地图都是昂贵的,尤其是对于资源受限的边缘机器。概率OCTOMAP是一种可靠且记忆效率的3D密集地图模型,可代表完整的环境,并具有动态素节点修剪和扩展容量。本文提出了第一个有效的加速器解决方案,即OMU,以实现边缘的实时概率3D映射。为了提高性能,通过并行PE单元更新输入MAP体素以进行数据并行性。在每个PE中,使用特殊开发的数据结构在并行内存库中存储。此外,在每个PE单元内设计了一个修剪地址管理器,以重复使用修剪的内存地址。提出的3D映射加速器是使用商业12 nm技术实施和评估的。与NVIDIA JETSON TX2平台中的ARM Cortex-A57 CPU相比,拟议的加速器可实现高达62美元的$ \ times $ performance和708 $ \ times $ $ \ times $能效的提高。此外,加速器提供63 fps吞吐量,比实时需求高2 $ \ times $ $ \ times $,从而实现了3D映射的实时感知。

Autonomous machines (e.g., vehicles, mobile robots, drones) require sophisticated 3D mapping to perceive the dynamic environment. However, maintaining a real-time 3D map is expensive both in terms of compute and memory requirements, especially for resource-constrained edge machines. Probabilistic OctoMap is a reliable and memory-efficient 3D dense map model to represent the full environment, with dynamic voxel node pruning and expansion capacity. This paper presents the first efficient accelerator solution, i.e. OMU, to enable real-time probabilistic 3D mapping at the edge. To improve the performance, the input map voxels are updated via parallel PE units for data parallelism. Within each PE, the voxels are stored using a specially developed data structure in parallel memory banks. In addition, a pruning address manager is designed within each PE unit to reuse the pruned memory addresses. The proposed 3D mapping accelerator is implemented and evaluated using a commercial 12 nm technology. Compared to the ARM Cortex-A57 CPU in the Nvidia Jetson TX2 platform, the proposed accelerator achieves up to 62$\times$ performance and 708$\times$ energy efficiency improvement. Furthermore, the accelerator provides 63 FPS throughput, more than 2$\times$ higher than a real-time requirement, enabling real-time perception for 3D mapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源