论文标题
离散硬木极限功能的第二个导数
The second derivative of the discrete Hardy-Littlewood maximal function
论文作者
论文摘要
在过去的二十年中,在离散和连续环境中,在离散和连续的环境中以及对中心和非中心变体的最大功能的规律性以及对中心和非中心变体的规律性已受到深入研究。但是到目前为止的努力集中在一阶的可不同性和差异上,众所周知,在连续环境中,更高阶段的规律性是不可能的。此简短说明给出了离散非中级最大函数的高阶规则性的第一个正结果。
The regularity of the Hardy-Littlewood maximal function, in both discrete and continuous contexts, and for both centered and noncentered variants, has been subjected to intense study for the last two decades. But efforts so far have concentrated on first order differentiability and variation, as it is known that in the continuous context higher order regularity is impossible. This short note gives the first positive result on the higher order regularity of the discrete noncentered maximal function.