论文标题
强烈抑制的klein-gordon方程的能量渐近学
Energy asymptotics for the strongly damped Klein-Gordon equation
论文作者
论文摘要
我们认为强烈阻尼的klein gordon方程用于散居非线性,并研究了周期溶液的能量的渐近行为。我们首先证明零均值解决方案的指数衰减至零。然后,对于具有足够小的初始数据的溶液,我们表征了能量的极限,当时时间趋于无穷大,我们最终证明了这种极限不是必需的零。
We consider the strongly damped Klein Gordon equation for defocusing nonlinearity and we study the asymptotic behaviour of the energy for periodic solutions. We prove first the exponential decay to zero for zero mean solutions. Then, we characterize the limit of the energy, when the time tends to infinity, for solutions with small enough initial data and we finally prove that such limit is not necessary zero.