论文标题
$ ϕ^{6} $模型的两个相互作用的扭结的动力学
Dynamics of two interacting kinks for the $ϕ^{6}$ model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider the nonlinear wave equation known as the $ϕ^{6}$ model in dimension 1+1. We describe the long time behavior of all the solutions of this model close to a sum of two kinks with energy slightly larger than twice the minimum energy of non constant stationary solutions. We prove orbital stability of two moving kinks. We show for low energy excess $ε$ that these solutions can be described for long time less o equivalent than $-\ln{(ε)}ε^{-\frac{1}{2}}$ as the sum of two moving kinks such that each kink's center is close to an explicit function which is a solution of an ordinary differential system. We give an optimal estimate in the energy norm of the remainder $(g(t),\partial_{t}g(t))$ and we prove that this estimate is achieved during a finite instant $t=T\lesssim -\ln{(ε)}ε^{-\frac{1}{2}}.$