论文标题

量子计算机是否实用?使用张量网络在推荐系统中选择功能的案例

Are Quantum Computers Practical Yet? A Case for Feature Selection in Recommender Systems using Tensor Networks

论文作者

Nikitin, Artyom, Chertkov, Andrei, Ballester-Ripoll, Rafael, Oseledets, Ivan, Frolov, Evgeny

论文摘要

协作过滤模型通常比基于内容的过滤模型更好,并且不需要仔细的功能工程。但是,在寒冷的场景中,协作信息可能稀缺甚至不可用,而内容信息可能很丰富,但获取也很嘈杂且昂贵。因此,选择改善冷启动建议的特定功能成为一项重要且非平凡的任务。在Nembrini等人的最新方法中,特征选择是由协作模型和基于内容的模型之间的相关兼容性驱动的。该问题被称为二次不受约束的二进制优化(QUBO),由于其NP-硬化的复杂性,该问题是使用D-Wave提供的量子计算机上的量子退火来解决的。受报告结果的启发,我们认为当前量子退火器在此问题上是优越的,而是专注于经典算法。特别是,我们通过TTOPT来解决Qubo,这是一种基于张量网络和多线性代数的最近提出的黑盒优化器。我们显示了这种方法对于具有数千个功能的大型问题的计算可行性,并从经验上证明,所发现的解决方案与在所有检查的数据集中使用D-Wave获得的解决方案可比。

Collaborative filtering models generally perform better than content-based filtering models and do not require careful feature engineering. However, in the cold-start scenario collaborative information may be scarce or even unavailable, whereas the content information may be abundant, but also noisy and expensive to acquire. Thus, selection of particular features that improve cold-start recommendations becomes an important and non-trivial task. In the recent approach by Nembrini et al., the feature selection is driven by the correlational compatibility between collaborative and content-based models. The problem is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) which, due to its NP-hard complexity, is solved using Quantum Annealing on a quantum computer provided by D-Wave. Inspired by the reported results, we contend the idea that current quantum annealers are superior for this problem and instead focus on classical algorithms. In particular, we tackle QUBO via TTOpt, a recently proposed black-box optimizer based on tensor networks and multilinear algebra. We show the computational feasibility of this method for large problems with thousands of features, and empirically demonstrate that the solutions found are comparable to the ones obtained with D-Wave across all examined datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源