论文标题

苏格兰卫星图像的上面生物量和土壤有机碳的联合研究用于总碳估算

Joint Study of Above Ground Biomass and Soil Organic Carbon for Total Carbon Estimation using Satellite Imagery in Scotland

论文作者

Chan, Terrence, Gomez, Carla Arus, Kothikar, Anish, Baiz, Pedro

论文摘要

长期以来,土地碳验证一直是碳信贷市场的挑战。当前可用的碳验证方法很昂贵,可能会产生低质量的信用。可扩展,准确的遥感技术可实现新的方法来监测地面生物量(AGB)和土壤有机碳(SOC)的变化。尽管一些研究表明两者之间存在正相关,但大多数最先进的研究都采用了对AGB和SOC的遥感。我们打算在研究中结合两个领域,以提高最新的总碳估计,并洞悉自愿碳交易市场。我们首先使用SOC和AGB领域中的最先进方法在苏格兰的研究区建立基线模型。然后研究功能工程技术(例如方差通胀因子和特征选择)对机器学习模型的影响。通过结合两个域的预测变量来扩展这一点。最后,我们利用AGB和SOC之间的可能相关性来建立两者之间的关系,并提出新型模型,以优于最先进的结果。我们比较了三种机器学习技术,增强的回归树,随机森林和XGBoost。这些技术已被证明是两个领域中最有效的技术。

Land Carbon verification has long been a challenge in the carbon credit market. Carbon verification methods currently available are expensive, and may generate low-quality credit. Scalable and accurate remote sensing techniques enable new approaches to monitor changes in Above Ground Biomass (AGB) and Soil Organic Carbon (SOC). The majority of state-of-the-art research employs remote sensing on AGB and SOC separately, although some studies indicate a positive correlation between the two. We intend to combine the two domains in our research to improve state-of-the-art total carbon estimation and to provide insight into the voluntary carbon trading market. We begin by establishing baseline model in our study area in Scotland, using state-of-the-art methodologies in the SOC and AGB domains. The effects of feature engineering techniques such as variance inflation factor and feature selection on machine learning models are then investigated. This is extended by combining predictor variables from the two domains. Finally, we leverage the possible correlation between AGB and SOC to establish a relationship between the two and propose novel models in an attempt outperform the state-of-the-art results. We compared three machine learning techniques, boosted regression tree, random forest, and xgboost. These techniques have been demonstrated to be the most effective in both domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源