论文标题

跨越树的连接子图很小

Spanning tree-connected subgraphs with small degrees

论文作者

Hasanvand, Morteza

论文摘要

让$ g $是带有跨度子图$ f $的图形,让$ m $成为一个正整数,让$ f $是$ v(g)$上的正整数值。在本文中,我们表明,如果对于所有$ s \ subseteq v(g)$,$$ω_m(g \ setMinus s)\ le \ sum_ { for each vertex $ v$, $d_H(v)\le f(v)+\max\{0,d_F(v)-m\}$, where $G[S]$ denotes the induced subgraph of $G$ with the vertex set $S$ and $Ω_m(G_0)$ is a parameter to measure $m$-tree-connectivity of a given graph $G_0$. 通过应用此结果,我们表明,每个$ k $连接的图形$ g $带有$ k \ ge 2M $具有跨度$ m $ m $ -tree连接子$ h $ h $,以至于$ d_h(v)\ le \ le \ big \ big \ big \ lceil \ lceil \ frac {m} {m} v(h)$;此外,如果$ g $是$ k $ -tree连接和$ k \ ge m $,则$ g $具有一个跨度$ m $ m $ -tree连接子$ h $ h $,以至于$ d_h(v)\ le \ le \ big \ big \ lceil \ lceil \ frac \ frac {m} v(h)$。结果,我们得出的结论是,每$(2M)$ - 边缘连接的图形与$ r \ ge 4m $允许一个跨度$ m $ m- $ - 树连接的子图,最高学位,最多为300万美元。 接下来,我们证明,图$ g $承认满足$Δ(h)\ le 2m+1 $的跨度$ m $ m- $ -tree连接的子图$ h $,如果对于所有$ s \ subseteq v(g)$,$ $ $ $ $ $ $ $ $ $ $ $ $ $,$ $ $ qub,$ s yminus s)+seetminus s) s)\ le \ frac {1} {m} | s | +1,$$,其中$ω(g \ setMinus s)$和$ iso(g \ setMinus s)$分别表示组件的数量以及分别$ g \ g \ setminus s $的零件数量。结果,我们得出的结论是,每$ m(n-1)$ - 连接$ k_ {1,n} $ - 免费的最低度足够大的简单图形,$ n \ ge 3 $允许最高$ 2M+1 $ $ 2M $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ - $ m- $ m-n \ ge 3 $。

Let $G$ be a graph with a spanning subgraph $F$, let $m$ be a positive integer, and let $f$ be a positive integer-valued function on $V(G)$. In this paper, we show that if for all $S\subseteq V(G)$, $$Ω_m(G\setminus S)\le \sum_{v\in S}\big(f(v)-2m\big)+m+Ω_m(G[S]),$$ then $G$ has a spanning $m$-tree-connected subgraph $H$ containing $F$ such that for each vertex $ v$, $d_H(v)\le f(v)+\max\{0,d_F(v)-m\}$, where $G[S]$ denotes the induced subgraph of $G$ with the vertex set $S$ and $Ω_m(G_0)$ is a parameter to measure $m$-tree-connectivity of a given graph $G_0$. By applying this result, we show that every $k$-edge-connected graph $G$ with $k\ge 2m$ has a spanning $m$-tree-connected subgraph $H$ such that $d_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-2m)\big\rceil+2m$ for each $v\in V(H)$; moreover, if $G$ is $k$-tree-connected and $k\ge m$, then $G$ has a spanning $m$-tree-connected subgraph $H$ such that $d_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-m)\big\rceil+m$ for each $v\in V(H)$. As a consequence, we conclude that every $(r-2m)$-edge-connected graph with $r\ge 4m$ admits a spanning $m$-tree-connected subgraph with maximum degree at most $3m$. Next, we prove that a graph $G$ admits a spanning $m$-tree-connected subgraph $H$ satisfying $Δ(H) \le 2m+1$, if for all $S\subseteq V(G)$, $$ ω(G\setminus S)+\small {\frac{m+1}{2}}\, iso(G\setminus S) \le \frac{1}{m}|S|+1,$$ where $ω(G\setminus S)$ and $iso(G\setminus S)$ denote the number of components and the number of isolated vertices of $G\setminus S$, respectively. As a consequence, we conclude that every $m(n-1)$-connected $K_{1, n}$-free simple graph with a sufficiently large minimum degree and $n\ge 3$ admits a spanning $m$-tree-connected subgraph with maximum degree at most $2m+1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源