论文标题

与模块化galois表示相关的理想班级数字组

Ideal class groups of number fields associated to modular Galois representations

论文作者

Dainobu, Naoto

论文摘要

令$ p $为模块化表格的奇数数字,$ f $。我们考虑$ \ mathbb {f} _p $ - valued galois表示$ \barρ_f$附加到$ f $及其twist $ \barρ_{f,d} $ by Quadratic Chartic $χ_d$对应于Quadratic Indientant $ d $ d $。我们将$ k_ {f,d} $定义为与$ \barρ_{f,d} $的内核相对应的字段。在本文中,我们调查了数字字段$ k_ {f,d} $的理想类$ \ mathrm {cl}(k_ {f,d})$作为$ \ mathrm {gal}(k_ {f,d}/d}/\ mathbb {q})$ - 模块。我们给出了一种条件,该条件意味着存在$ \ mathrm {gal}(k_ {f,d}/\ mathbb {q})$ - 来自$ \ mathrm {cl}(k_ {f,d})\ otimes \ otimimes \ ot \ mathbb {$ d $ d $ d $ d $ d p yp的$ \ mathrm {Clrm {cl}的equivariant earivariant formormorthism $ \barρ_{f,d} $,使用Bloch和Kato的Selmer Group $ \barρ_{f,d} $。我们还提供了一些数值示例,其中通过计算Bloch和Kato的猜想下的$ f $ twist $ f $ twist的$ l $ function的核心价值来进行这种过渡。本文我们的主要结果是对Prasad和Shekhar先前在椭圆曲线上的结果部分概括为更高的重量模块化形式。

Let $p$ be an odd prime number and $f$ a modular form. We consider the $\mathbb{F}_p$-valued Galois representation $\barρ_f$ attached to $f$ and its twist $\barρ_{f, D}$ by the quadratic character $χ_D$ corresponding to a quadratic discriminant $D$. We define $K_{f, D}$ to be the field corresponding to the kernel of $\barρ_{f, D}$. In this article, we investigate the ideal class group $\mathrm{Cl}(K_{f, D})$ of the number field $K_{f, D}$ as a $\mathrm{Gal}(K_{f, D}/\mathbb{Q})$-module. We give a condition which implies the existence of a $\mathrm{Gal}(K_{f, D}/\mathbb{Q})$-equivariant surjective homomorphism from $\mathrm{Cl}(K_{f, D})\otimes \mathbb{F}_p$ to the representation space $M_{f, D}$ of $\barρ_{f, D}$, using Bloch and Kato's Selmer group of $\barρ_{f, D}$. We also give some numerical examples where we have such surjections by calculating the central value of the $L$-function of $f$ twisted by $χ_D$ under Bloch and Kato's conjecture. Our main result in this paper is a partial generalization of the previous result of Prasad and Shekhar on elliptic curves to higher weight modular forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源